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any information, apparatus, product, or process disclosed, or represents that its use would not
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Abstract

This report presents results from the DOE workshop on Software Productivity for eXtreme-scale Science
(SWP4XS) held January 13-14, 2014, in Rockville, MD. The workshop brought together approximately fifty
experts in the development of large-scale scientific applications, numerical libraries, and computer science
infrastructure to determine how to address the growing crisis in software productivity caused by disruptive
changes in extreme-scale computer architectures and new frontiers in modeling, simulation, and analysis
of complex multiscale and multiphysics phenomena. Critical research is needed in five broad areas: (1)
characterizing and measuring extreme-scale software productivity impediments and opportunities, (2) ad-
dressing the impact of extreme-scale architectures on infrastructure and applications, (3) extending software
ecosystems to support extreme-scale science, (4) identifying, developing, and disseminating software pro-
ductivity and engineering practices for extreme-scale computing, and (5) growing an extreme-scale software
productivity community. A focused effort on improving software productivity can lead to new methods and
approaches that improve the quality, decrease the cost, and reduce the development and maintenance ef-
fort for production scientific software, providing the foundation for more fully exploiting extreme-scale
resources for scientific discovery.
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Executive Summary

While emerging extreme-scale computing systems provide unprecedented resources for scientific discov-
ery, DOE’s scientific communities now face a crisis in extreme-scale scientific software productivity due
to a powerful confluence of factors: ongoing disruptive changes in computer architectures and new fron-
tiers in modeling, simulation, and analysis of complex multiscale and multiphysics phenomena. Research
in mission-critical science and energy problems has become increasingly dependent on high-performance
computing, but productivity in extreme-scale scientific application development has not kept pace. The
principal issues are (1) a significant lag between extreme-scale hardware and algorithmic innovations and
their effective use in applications, leading to poorly scaling codes; (2) obstacles in the combined use of
independently developed software components; (3) lack of agile yet rigorous software engineering practices
for high-performance computing; and (4) failure to consider the entire lifecycle of large scientific software
efforts, leading to fragile, complicated application codes that are increasingly difficult to enhance.

Software productivity is a key aspect of overall scientific productivity, identified as one of the top ten
exascale research challenges by a recent ASCAC subcommittee. Scientific productivity can be consid-
ered an overall measure of quality of the complete process of achieving mission-driven science results—
incorporating software productivity (effort, time, and cost for software development, maintenance, and sup-
port), execution-time productivity (efficiency, time, and cost for running scientific workloads), workflow and
analysis productivity, and the value of computational output in terms of scientific discovery. These pervasive
and urgent problems in software productivity—as manifested by human resources in development time, ma-
chine and energy resources in runtime, and even questions about correctness of computational results—span
throughout all DOE extreme-scale computational science communities and broadly impact the overall DOE
research portfolio and budget. Moreover, these difficulties will grow because of the need for repeated reengi-
neering and revision of performance-critical code during a disruptive period of rapid changes in execution
models driven by the end of Dennard scaling and the looming end of Moore’s Law.

In order to address these critical and timely concerns, which are far beyond current understanding, we
recommend support for a collection of focused software productivity research efforts within the DOE Office
of Advanced Scientific Computing Research. Specifically, we recommend the following activities, discussed
in detail in Section 5, in order to qualitatively improve software productivity for extreme-scale science:

1. Characterize and measure extreme-scale software productivity impediments and opportunities.
2. Develop software designs that minimize the impact of ongoing computer architecture changes.
3. Characterize opportunities for enabling advanced multiphysics, multiscale, and analysis capabilities.
4. Develop composable and interoperable components and libraries.
5. Identify, develop, and disseminate knowledge of productivity tools and best practices.
6. Develop productivity partnerships throughout DOE and other agencies.
7. Establish a Software Productivity Technical Council.

Software productivity improvement is measured by the breadth of applications that can effectively uti-
lize extreme-scale architectures; the rate at which new capabilities can be deployed; and the reduction of
development and maintenance costs, including reengineering, over the lifetimes of applications, libraries,
and tools. Our goal is to fundamentally change extreme-scale scientific software infrastructure and cul-
ture through an ambitious research agenda that leads to new methods and approaches for portable,
composable, and interoperable applications, libraries, and tools as foundations for scientific discovery.

This report is based on discussions within DOE as well as contributions from over fifty experts who
participated in an intensive 1.5-day workshop. The report presents an overarching vision for new research to
increase extreme-scale scientific software productivity; we summarize a set of supporting goals and science
drivers and identify important challenges that must be addressed to make the vision of more productive
software a reality. We also discuss critical needs for crosscutting outreach and programmatic components.
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1 Introduction

The peak performance of modern supercomputers continues to improve dramatically, but a growing gap
exists in real productivity, as scientific application teams require more time and effort to adapt to the most
advanced DOE high-performance computing (HPC) systems, characterized by myriad novel architectural
features, including millions of cores, simultaneous multithreading, vectorization, core heterogeneity, uncon-
ventional memory hierarchies, and new programming models. Studies consistently point to the need for
better scientific application software development processes as a key enabler for scientific advancement on
extreme-scale platforms [27, 30, 31, 51–53, 63].

Large, distributed scientific teams face difficulties in fully exploiting sophisticated libraries, system
software, runtime tools, and programming models in the face of rapidly changing and complex machine
architectures and operating constraints; other challenges include developing, reengineering, and porting
application software. Moreover, as science goals transition from qualitative to quantitative simulations that
can predict experimental observations and inform high-impact policy and decision support, new frontiers
of multiscale and multiphysics simulations not only need to combine multiple applications developed by
different teams but also increasingly must incorporate data analytics, design, optimization, and uncertainty
quantification on top of traditional forward models [19–27, 52]. No single team has the resources to address
all these interdisciplinary functionalities, and new generations of computational scientists face a daunting
scope of skills and knowledge as prerequisites for their own research contributions.

The concurrent trends in extreme-scale architectures and applications have created a major scientific
software productivity crisis. Many application teams are unable to address the software refactoring needs
and the growing feature requirements with the resources available to them. Without an increase in software
productivity we will not realize the performance and feature requirements with the staffing levels available
to us.

1.1 Software productivity’s role in overall scientific productivity

We note that software productivity is a key component of overall scientific productivity, identified as one of
the top ten exascale research challenges in a recent subcommittee report by the Advanced Scientific Com-
puting Advisory Committee [20]. Scientific productivity can be considered an overall measure of quality of
the complete process of achieving mission-driven science results. Scientific productivity includes software
productivity (effort, time, and cost for software development, maintenance, and support), execution-time
productivity (efficiency, time, and cost for running scientific workloads), workflow and analysis productivity
(effort, time, and cost for the overall cycle of simulation and analysis), and the value of computational output
in terms of grand challenge scientific discovery. Figure 1 illustrates how advances in software productivity
contribute to accelerating the cycle of scientific discovery on emerging extreme-scale architectures.

In order to identify priorities in research and development to address these challenges in extreme-scale
scientific software productivity, the DOE Advanced Scientific Computing Research (ASCR) program con-
vened a workshop January 13-14, 2014, in Rockville, MD. About fifty leaders in large-scale scientific ap-
plications, numerical libraries, and computer science tools (see Appendix C) assessed the needs of com-
putational science software on emerging architectures and considered scientific software lifecycle and in-
frastructure requirements for large-scale code development efforts, including potential contributions that
software engineering can bring to HPC software at scale. This document distills input from workshop
breakout sessions, position papers (listed in Appendix D and available at the workshop website, http:
//www.orau.gov/swproductivity2014), and ongoing conversations in the DOE community. Comple-
mentary issues in extreme-scale execution-time productivity, such as programming models, runtime systems
that speculatively migrate data, workflow control and management, and automatic management of power
and reliability, are the focus of another working group.

ASCR Workshop on Software Productivity for Extreme-scale Science 1
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Figure 1: Increasing software productivity is a key aspect of accelerating the cycle of scientific discovery on
emerging extreme-scale architectures.

1.2 Vision

Our overarching vision of software productivity for extreme-scale science is as follows:

To improve the quality, decrease the cost, and accelerate the delivery of production scien-
tific applications through extensible software ecosystems of trusted, composable, interop-
erable libraries and tools that provide a foundation for extreme-scale scientific discovery.

The remainder of this document delves into more details about productivity challenges in extreme-
scale application software development (Section 2); identifies extreme-scale software productivity gaps
(Section 3); calls out crosscutting needs and dependencies (Section 4); and highlights recommendations
in research, development, outreach, and programmatic interactions to achieve our vision (Section 5). This
work is essential to ensure that extreme-scale computational science, broadly recognized as an enabler of
experimental and theoretical approaches, continues to thrive through vibrant and productive extreme-scale
software ecosystems and communities that enable high-impact policy and decision support.

2 Productivity Challenges in Extreme-Scale Application Software Develop-
ment

To provide context for understanding this software productivity crisis, we summarize extreme-scale com-
puting trends and crosscutting software productivity challenges in the shift toward high-fidelity multiscale
and multiphysics simulations. We then highlight difficulties in refactoring existing applications, developing
completely new applications, and integrating simulations and data analytics; and we summarize the primary
software productivity concerns of workshop participants.

Appendix A discusses these software productivity challenges from the perspective of mission-critical
DOE Office of Science applications in climate (Section A.1), environmental management (Section A.2),
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fusion energy sciences (Section A.3), and advanced nuclear reactors (Section A.4). These applications,
developed by large, diverse, and distributed groups of domain scientists, computational scientists, applied
mathematicians, and computer scientists, have been selected as representative examples of a much broader
DOE simulation portfolio and confront crosscutting software productivity challenges that arise in NNSA
applications as well.

2.1 Extreme-scale computing trends

While exascale platforms are not likely to appear for at least another 6-8 years and while many details of the
hardware, runtime system, and programming models are still the subject of active research, we nonetheless
have a relatively clear picture of the key motivating ideas and basic characteristics of exascale systems [20,
31, 53]. Application programmers can expect a programming environment that, driven largely by power
constraints and budget realities, represents a sharp departure from long-established trends. Specifically, we
expect to see (1) memory and memory bandwidth to FLOP/s ratios at least one order of magnitude smaller
than current systems; (2) up to billion-way concurrency with multiple levels of concurrency; (3) hybrid
systems with reliance on lightweight cores with support for mixed MIMD- and SIMD-type parallelism; (4)
more direct control of deeper memory hierarchies, including direct control of on-node NUMA memory; (5)
much higher performance penalties for global synchronization; and (6) possibly more direct programmatic
control of tradeoffs in performance, power, and resilience. Indeed, some of these features have already
made their way into existing leadership-class machines, for example in the appearance of high-throughput
many-core coprocessors to boost single-node peak performance at relatively modest power.

The present time period in high-performance computing is arguably the most challenging in history
for application developers. We have seen the elimination of sequential performance improvements, the
emergence of threading and re-emergence of vectorization, and a large collection of competing parallel pro-
gramming models, none of which are robust and widely available. Several many-core and accelerator-based
node architectures are rapidly evolving and distinctly different in design strategies. For existing applications,
the performance-critical parts of source code will need to be refactored to achieve good performance. For
new applications, portable designs are just emerging. Furthermore, there is widespread concern that another
disruption will occur within 10-15 years as Moore’s law reaches its end.

Application productivity during the past two decades. The last major paradigm shift in HPC platforms
began more than two decades ago, with the dawn of the “terascale” era, where the task of developers was to
evolve existing vector codes to a distributed-memory parallel model. After a period of research in message-
passing models, the Message Passing Interface (MPI) was standardized. In most applications, MPI was
encapsulated and domain scientists could continue to write numerical algorithms following familiar idioms.
Parallel execution models matched natural problem-partitioning strategies such as domain decomposition,
and performance advancements resulted from incremental improvements to weak scaling and increases in
processor speeds. This trend continued into today’s “petascale” era, largely through Moore’s law, break-
throughs in scalable algorithms, and slight modifications to mix moderate threading with MPI.

Thus, prior to this new era of disruptive architectural changes, continued improvement in HPC applica-
tions often equated to increased scalability, typically within the context of a familiar programming paradigm,
and in parameter regimes (e.g., in terms of machine balance, network characteristics) that varied relatively
little with each machine generation. This period was naturally compatible with continual application pro-
ductivity in the presence of faster and faster computers, as efforts to achieve the next level of performance
were typically undertaken with highly targeted or evolutionary improvements to production codes. This pe-
riod also saw a tremendous increase in the complexity of applications, including an increased emphasis on
simultaneous coupling of different physical models, sophisticated meshing strategies for complex geome-
tries, and a broad range of runtime options to enable modeling different physical scenarios within a single
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code base. A variety of community codes have emerged, where in many cases good software engineering
practices have facilitated larger-scale software collaborations, in turn benefitting the overall scientific pro-
cess [35]. Especially critical is the fact that increases in application productivity during this period were
in part enabled by more robust and sophisticated application-level libraries—solvers, meshing, I/O, and so
forth—that freed application developers from having to focus too much on the implementation details of
common HPC approaches.

2.2 New science frontiers: Multiphysics, multiscale, and beyond

Growth in computing capabilities has historically enabled increases in the size, resolution, and physical
fidelity of simulations. “Single physics” simulations are rapidly maturing, however, and in many cases we
are approaching the point of diminishing scientific returns from continued refinements of problem size or
resolution. Instead, attention is turning to new approaches to further improve the realism and predictive
power of simulations by placing them in a larger context. Coupling of simulations across different types of
physics (multiphysics) and different time and length scales (multiscale) is becoming increasingly important
in improving the physical fidelity of computational models. Parameter studies and design optimization
employ ensembles of simulations to extend the science beyond point solutions and into exploration of the
problem space. Uncertainty quantification and sensitivity analysis studies essentially help to place “error
bars” on simulation results and to understand how error bars on the inputs propagate through simulations.
These approaches represent new frontiers from a computing perspective, impacting applications in new
ways—both in how codes are designed and written and in how they are used.

Software for these new scientific frontiers presents a host of difficulties beyond those faced in single-
physics contexts because of the compounded complexities of code interactions [52]. Perhaps the most
fundamental crosscutting observation is that collaboration is unavoidable because the full scope of required
functionality is broader than any single person or team can deeply understand. Moreover, because software
is the practical means through which collaboration on extreme-scale algorithms and applications occurs,
software productivity issues are front and center as we combine diverse code for the various phases of
simulation and analysis. Scientific application teams face daunting challenges both in building application-
specific infrastructure and in incorporating libraries, frameworks, and tools that are under development by
many groups. Practical difficulties in collaborative research software center on the need for composable
and interoperable code with support for managing complexity and change as architectures, programming
models, and applications continue to advance.

2.3 Scope of software productivity challenges

Software productivity challenges arise across the full spectrum of capabilities needed to support new archi-
tectures and new science, including refactoring legacy code, developing new applications, and integrating
simulations and data analytics.

2.3.1 Refactoring legacy applications

It is widely recognized in the HPC community that making efficient use of anticipated exascale platforms
will in many cases require fundamental changes in the design and implementation of traditional numerical
approaches. Substantial changes in machine architectures in recent years have already thrust application
teams into grappling with how to most effectively use these platforms. The performance-critical parts of
source code will need to be refactored to achieve good performance, primarily to address the striking in-
crease in hardware complexity and concurrency and fundamentally new resiliency concerns that will char-
acterize future extreme-scale systems. Dramatic changes to application design and implementation will
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be necessary in order to map functional and memory requirements of applications to hardware functional
units and memory systems. New physics and analysis capabilities also must be incorporated over the life-
time of application codes. In many cases, these changes must be made in legacy code bases that are not well
understood and for which the software design, documentation, and testing do not meet modern expectations.

Moreover, existing applications and capabilities must be supported in order to meet scientific and mis-
sion goals during significant code transformation, further exacerbating the problem of maintaining produc-
tive development and use of application software. The problem of maintaining a high level of software
development and user productivity in the extreme-scale computing era will be particularly acute for large,
integrated applications, often developed over decades; the overall cost for development of these codes often
corresponds to an investment of hundreds of full-time equivalent years of labor. Such codes typically com-
bine a large code base, which provides a wide range of modeling and analysis capabilities, with dozens of
independently developed libraries.

2.3.2 Developing new science applications

Because extreme-scale computing resources will enable researchers to tackle completely new science ques-
tions, out-of-the-box formulations that start from a clean slate may be needed for integrated multiphysics and
multiscale modeling that includes design optimization, integrated UQ, and inverse problems. For new sci-
ence applications, portable designs for emerging heterogeneous extreme-scale architectures are just emerg-
ing, and approaches will continue to evolve as programming models and architectures continue to change.
Key challenges in the paradigm shift to expose, explore, and exploit multilevel parallelism include achieving
performance portability while ensuring resiliency and energy awareness.

2.3.3 Integrating simulations and data analytics

Another emerging paradigm shift for extreme-scale science involves removing the barrier between tradi-
tional simulation and postprocessing of simulation data for scientific insights. Reasons for this shift are the
intractability of the sheer volume of simulation data, myriad aggregated diagnostics that are too difficult
to postprocess and thus are better suited for in situ diagnostics, and the potential for advanced diagnostics
and analysis to guide simulations during runtime. Examples include data assimilation (incorporating exper-
imental or other data into simulations), error calculations (using time-step or mesh refinement criteria), and
simultaneous calculation of ensembles of simulation data (for sensitivity or uncertainty quantification).

The software productivity gap in this context cuts through aspects of scientific and software productivity
and effective use of extreme-scale hardware resources. It also reintroduces familiar software productivity
challenges: Applications must be designed to be modular, so that analysis can be done concurrently. Scalable
component libraries need to be made available for offloading I/O and analysis of simulation data in situ or in
transit. Tools and programming models must support data constructs appropriate for analysis while data is
in-memory and streaming to file systems. In particular, we see an opportunity to establish “data brokers” as
intermediaries between computational entities, data analysis tools, and databases. The functionality of these
brokers exists in various applications but needs to be extracted and extended. In addition, as the software
tools used in simulation and analysis are merged, environment configuration and software compatibility are
important issues.

2.3.4 Concerns of application software developers

These ongoing disruptive architectural changes and pursuit of new science frontiers raise deep questions
about software productivity on the trajectory to exascale computing. Many critical applications have no
ability and no current plans to leverage new architectural features. Such efforts are taking a pragmatic, wait-
and-see strategy with regard to future code restructuring until a path forward becomes clearer. While the
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urgency of addressing these architectural changes is widely recognized, many teams have limited resources
and insufficient insights about appropriate strategies to explore. These resulting delays in addressing ongoing
architectural changes thus increase the pressure on development teams because the timeline to extreme-scale
computations is compressed. Without a strategy and associated research to facilitate the transition of real
applications to next-generation architectures, as well as the development of completely new science codes,
we are likely to have mission-critical application codes capable of only petascale performance on “exascale”
platforms.

Responses to a subset of questions from a pre-workshop survey provided to all workshop registrants
offer insight into concerns shared across the HPC application community. Twenty-six workshop partici-
pants responded to some or all of the survey questions. Of these respondents, 24 indicated that they expect
to evolve their current codes to extreme scale, rather than completely rewriting them from scratch. The re-
spondents’ planned extreme-scale parallelization approaches centered on hybrid “MPI+X” strategies, where
X included OpenMP, OpenCL, OpenACC, Pthreads, Intel TBB, CUDA, accelerators, and others. One re-
spondent captured sentiments of many participants by saying, “Everything is under consideration; we will
do what is necessary.” This attitude is reflected in the fact that 16 respondents said they would consider
using a radically different programming model for extreme scale. We also asked survey respondents to
rank the importance of various concerns in the transition to extreme-scale architectures. The top concerns
were achieving and maintaining portable performance, dealing with programming model uncertainty, having
robust library and tool support, and debugging at scale.

While some research teams are already incorporating aspects of productivity methodologies that are
most relevant to their unique needs and microcultures, the community as a whole is only beginning to grapple
with understanding and improving productivity of broader extreme-scale scientific software ecosystems.

3 Extreme-Scale Software Productivity Gaps

Considering the context of these architectural changes and new directions in extreme-scale computational
science, workshop organizers distilled input from position papers, breakout sessions, and ongoing conver-
sations in the DOE community to reach a consensus on five broad categories of software productivity gaps
that require focused investment.

• Characterizing and measuring extreme-scale software productivity impediments and opportu-
nities (Section 3.1): Gather, analyze, and categorize software productivity challenges as first steps to
identify, measure, and track metrics for software productivity and code quality throughout project and
software lifecycles.

• Addressing the impact of extreme-scale architectures on infrastructure and applications (Sec-
tion 3.2): Transition software design and data structures to take full advantage of new features of
emerging extreme-scale architectures in order to achieve portable performance as well as resilience,
reproducibility, and use of high-level abstractions.

• Extending software ecosystems to support extreme-scale science (Section 3.3): Transform li-
braries, tools, and applications into robust, interoperable, and easy-to-use software ecosystems, with
support for composability and library interoperability, multiphysics and multiscale coupling method-
ologies, and configuration and build systems, as well as testing, verification, validation, and debugging
at scale.

• Identifying, developing, and disseminating software productivity and engineering practices for
extreme-scale computing. (Section 3.4). Adapt mainstream software productivity and software
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engineering methodologies in order to address the unique requirements of extreme-scale scientific
computing.

• Growing an extreme-scale software productivity community (Section 3.5): Provide productivity
training for software developers, and create forums for information exchange about software produc-
tivity issues.

Despite the breadth and complexity of these gaps, the DOE community is well positioned to exploit the
unique features of mathematical and scientific software for extreme-scale software productivity research and
development (R&D). The list, although not necessarily complete, represents the opportunities identified by
a large, representative group from the extreme-scale computational science community. We expect topics
to evolve as the community’s experience deepens over time. Section 4 discusses crosscutting needs and
dependencies. Section 5 summarizes our recommendations for addressing these gaps.

3.1 Characterizing and measuring extreme-scale software productivity impediments and
opportunities

If we are to make significant improvements in software productivity, we must understand in greater depth
than is possible in a 1.5-day workshop where we are today, how we got here, and what the impediments are
to software productivity. The community has considerable experience with software development practices
and tools that can both inform directions for new research and development and help lay the groundwork
for the evaluation of their impact on software productivity.

3.1.1 Inventory of HPC software productivity issues and experiences

While DOE computational communities have been developing HPC software for many years, we do not
have a strong tradition of self-evaluation. This situation is especially evident in areas such as software
productivity, which tend to be somewhat removed from the core scientific issues driving most computational
scientists.

As an initial phase of productivity research, we need to mine the community’s experience with software
development in order to gain a deeper understanding of the impediments to software productivity at extreme
scale, and to identify and understand tools and approaches that have proven effective (or not) in addressing
those issues. Every project uses some software development methodology, whether or not it is explicitly
stated and consciously applied. Likewise, every development team encounter issues that limit their progress.
Some development teams make conscious efforts to address issues, while others may have a hard time
putting their finger on “the problem,” much less addressing it.

Appendix B outlines in an informal fashion some of the experiences and “lessons learned” in the HPC
library community. Bringing the perspective of more rigorous software engineering research to the study
of both individual and communities of scientific software projects provides a way to rapidly “bootstrap”
our understanding of the state of the art in software productivity and to lay the groundwork for future pilot
projects and case studies, as discussed in Section 3.4.

3.1.2 Understanding how HPC scientific software is different

Developing a deeper understanding of what distinguishes HPC scientific software from other types of soft-
ware with respect to development practices is a valuable related area of study. Empirically, attempts to
“import” software engineering practices that are well accepted outside of scientific computing often prove
unsuccessful or require significant adaptation. This circumstance is indicative of differences from the en-
vironments in which the practices were developed; however, those differences have not been well studied.
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A better appreciation of the underlying differences would facilitate the tailoring of software engineering
practices for use by HPC scientific software teams, as discussed in Section 3.4.

3.1.3 Metrics for software and productivity

The field of software engineering has developed many metrics to characterize and quantify different aspects
of software, software quality, and software development processes. However, consensus on a concise, ex-
plicit definition of productivity has been difficult to achieve. The DARPA HPCS program (where the “P”
stands for productivity) focused considerable effort on characterizing productivity [30, 65, 66]. Rather than
focusing on a single overarching definition of software productivity, we propose a two-pronged approach,
which relies on qualitative assessments of productivity together with widely accepted related metrics from
the software engineering community.

A common phrase in product development is “better, faster, cheaper: choose any two.” Intuitively, we
recognize that improvements in any of the areas (better, faster, cheaper) is an improvement in the overall
product development process. But at the same time, improvements in one area can have negative impacts
on another. For example, as discussed in the book Code Complete [59], improvement in the metric of code
efficiency has a negative influence on code quality metrics of correctness, reliability, integrity, adaptability,
and accuracy. Thus, we will need to consider overall software productivity issues for the full range of human
resources in code development time, machine and energy resources in code runtime, and even questions
about scientific correctness of computational results. Moreover, we must consider the tensions and balance
among these issues, with a goal of achieving overall productivity advances in the volume of “better, faster,
and cheaper.”

We can talk about improving software productivity if we identify changes in the way we produce soft-
ware that are positive in a specific metric and do not introduce unacceptable degradation in other metrics.
A useful analogy is corrective lenses. Although it is hard to assert that a given lens provides the best vision,
it is easy to determine which of two candidate lenses provides better vision. Characterizing and managing
extreme-scale software productivity can be approached in a similar way.

As such, an important part of the process of characterization of experience in HPC software productivity
should be collecting and analyzing software metrics in order to gain a better understanding of their rela-
tionship to qualitative perceptions of productivity. Characterization of software productivity impediments
will naturally lead to determining metrics that can be correlated with software productivity in order to de-
termine the severity of problems, direct R&D resources where most needed, and gauge the extent to which
we are making progress in the right directions. Research is needed to identify, measure, and track metrics
for software productivity and code quality throughout project and software lifecycles, with the ultimate goal
of improving key metrics of scientific productivity, such as how fully and efficiently applications utilize
extreme-scale resources and how rapid and efficient software development is for validated scientific appli-
cations. This work requires coordination across application and library development teams as well as DOE
leadership computing facilities.

3.2 Addressing the impact of extreme-scale architectures on infrastructure and applications

As discussed in Section 2, exascale platforms will require fundamental changes in the design and imple-
mentation of traditional numerical approaches. Many software productivity challenges span both scientific
applications and reusable libraries that form intermediate layers of the software stack, and in this section,
we use the term application to include libraries and other large bodies of code that need to move to extreme-
scale systems.

The issues raised here are crosscutting—intertwined with already recognized R&D needs for extreme
scale. Regardless of how these issues are addressed programmatically, the workshop participants were clear
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on their significance to scientific productivity. We highlight these issues from the perspective of their impact
on the software development process. Identified research needs include the following:
• Supporting diversity and rapid change in applications to keep pace with the changing extreme-scale

hardware environment (Section 3.2.1)
• Understanding application performance (Section 3.2.2)
• Achieving performance portability across diverse and changing extreme-scale architectures (Section 3.2.3)
• Incorporating new approaches to resilience and new concepts of reproducibility into applications (Sec-

tion 3.2.4)
• Introducing higher levels of abstraction into applications (Section 3.2.5)

3.2.1 Preparing for extreme-scale architectures—and continual change

The field of HPC architectures is in a state of flux, the like of which has not been seen in more than two
decades. Not only will applications face a very different hardware environment from today’s high-end
systems, as noted in Section 2, but there may be multiple such architectures, not amenable to a single
abstract machine model, for applications to target. Furthermore, it is likely to be a decade or more before the
situation settles down—if it does at all. Lower-level elements of the software stack (programming models,
compilers, runtime systems, operating systems, etc.) will certainly help application developers address these
changes. But like the hardware, the software stack is in a state of significant flux, in large part responding
to the trends in hardware architecture.

Consequently, applications running on future extreme-scale architectures, whether they are created anew
or based on existing code, will face complex and changing environments. To take advantage of extreme-scale
platforms, developers will have to significantly change the performance-sensitive portions of their existing
code bases, or their thinking and algorithms as they create new applications. Research is needed to help
application developers deal with the need for “continual” change in their applications in response to diverse,
changing hardware environments, including the development of design strategies and other approaches to
insulate application code from architectural details (while delivering high performance), as well as refac-
toring, transformation, and other tools to facilitate the rapid and efficient adaptation of code to different
architectures.

3.2.2 Understanding application performance

Understanding the performance implications of existing code and determining how to obtain high perfor-
mance from new hardware architectures are clearly fundamental to any effort in extreme-scale computing.
The coverage, quality, and usability of this kind of information can allow developers to narrow their design
choices with less of the tedious and time-consuming “brute force” performance exploration that requires
producing and evaluating multiple variations of a given algorithm or code. Research is needed to facilitate
the identification, extraction, and understanding of key kernels that will determine performance on future
systems (which may not be the same ones that determine performance on today’s systems). Also useful is
an understanding of the performance of an application or phase of computation in relation to what should
be achievable on a given platform. Research to address these issues might include the development of a
minimal set of abstract machine models for emerging hardware architectures and techniques that simplify
the development of performance models for applications and help automate the prediction of performance
and scalability, as well as the testing and tracking of actual performance. More generally, approaches would
be helpful that can provide guidance to application designers and developers about choices of algorithms
and data structures, possibly including exemplars of important kernels, for different architectures or different
degrees of performance portability.
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3.2.3 Enabling performance portability

Performance portability offers significant benefits in terms of both development and execution-time pro-
ductivity: the developer can confidently expect that a given version of an algorithm or application will
deliver predictable performance across the applicable range of hardware architectures. Achieving perfor-
mance portability essentially requires that the application be expressed in a form that can be effectively
mapped onto the different target architectures. As the set of hardware architectures of interest becomes
larger and more diverse, performance portability becomes increasingly challenging. Research is needed to
identify and develop new abstractions that express the parallelism and other aspects of the computation in
a way that can be mapped effectively to the breadth of emerging architectures. Researchers should be en-
couraged to consider approaches based on domain-specific languages as well as approaches that will work
both with existing HPC languages (i.e., language extensions, directives, and libraries) and with new and
emerging general-purpose programming languages that might provide a better fit for future extreme-scale
systems. The ability to effectively map these modes of expression onto diverse hardware environments is
the second part of achieving performance portability. Research on resource management techniques for new
and emerging architectural features, and the management of resources in increasingly multilevel environ-
ments (multiple levels of parallelism, deeper memory hierarchies, etc.), especially in applications based on
the composition of software modules, would be beneficial, as would approaches for dynamic adaptation or
autotuning to improve the use of system resources.

3.2.4 Resilience and reproducibility

In addition to changes in the hardware architecture, resiliency is a growing concern for future systems.
The overwhelming majority of current applications are written assuming that a hardware failure will occur
once every few days, or even weeks. As a result, the “gold standard” of fault recovery for most scientific
applications in use today is global checkpoint restart. On future extreme-scale systems, the number of system
components will be several orders of magnitude larger than today’s machines, and individual components
may be less reliable than in the past. In an environment in which the frequency of failure may be reduced to
hours, applications are likely to encounter new failures while recovering from prior failures. This situation
could easily lead to paralysis of the application (inability to make forward progress) or unrecoverable failure
of the application. The resilience research community is beginning to address these issues, but many of
the new approaches that have been proposed are much more intrusive on the application itself than in the
past, making it also a significant software productivity concern. Research is needed to complement the
basic research on new methods of resilience, addressing how these new approaches can most effectively and
efficiently be incorporated into existing and new applications. This might include, for example, new design
strategies, resilience-oriented refactoring patterns, and transformational tools. Similarly, research will be
needed to determine the relationship between new extreme-scale numerical algorithms and the algorithmic
and hardware vulnerabilities, in order to understand the best ways to protect applications, as well as the best
ways to factor resilience between applications themselves and libraries.

Future resilience concerns also amplify the challenges associated with reproducibility at extreme scales.
Bitwise reproducibility of computational results has long been considered the gold standard. Applications
that cannot reproduce their selected test cases at this level may not be trusted by users and may lead to ques-
tion as to the correctness of the code. Reproducibility has long been a challenge because of the details of
fixed-precision floating-point representations, which are exposed by many compiler and runtime optimiza-
tions, as well as any nondeterminism in parallel algorithms. In the extreme-scale era, these challenges will
be exacerbated by the push to increasing levels of asynchrony and nondeterminism, as well as increasing
use of dynamic and adaptive algorithms and runtimes, plus the increased likelihood of transient errors and
silent data corruption affecting results. Further, multiscale and multiphysics applications, which are an in-
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creasingly prominent part of extreme-scale computational science, are often highly sensitive to algorithmic
and modeling decisions that are made dynamically based on the state of program execution.

Historically, the solution to these challenges has been primarily to serialize operations so that they can be
reproduced. This approach has obvious impacts on performance and becomes increasingly untenable as the
level of concurrency rises. Moreover, these techniques cannot address the variability arising from transient
errors. Also, hardware vendors estimate that adding additional correctness checking capabilities to proces-
sors may increase energy consumption by as much as 20%, which will likely limit their availability and
use. Research is needed to develop new definitions of, and requirements for, reproducibility in applications,
as well as new approaches to testing and debugging that reduce the dependence on bitwise reproducibility.
New tools and analysis methodologies will be needed to determine whether results are unacceptably differ-
ent, because of a hardware or software bug, or within acceptable error bounds or margins of uncertainty for
physical models to be suitably predictive.

We note that the scientific community at large is beginning to grapple with the challenges of the re-
producibility of research at a higher level—essentially, whether it is possible for outsiders to reproduce the
research described in a scientific paper. While this is an important and related question, this workshop and
these recommendations are focused on a narrower issue—the reproducibility of a given simulation when run
multiple times on the same or different hardware.

3.2.5 Higher-level abstractions

An important aspect of improving scientific productivity is raising the level of abstractions used by devel-
opers throughout the software stack. As discussed in Appendix B, many libraries and applications employ
abstraction layers, where unified high-level interfaces provide easy access to multiple underlying implemen-
tations of sophisticated algorithms and data structures, thereby enabling adaptivity to the needs of particular
problem instances and architectures. However, even when using such design strategies, instead of focusing
on what should be the main task of introducing new functionality, developers of applications and libraries
spend far too much time on the labor-intensive and ad hoc process of modifying and extending existing
code in order to port to new platforms, support new data types, and improve performance. This is a long-
standing challenge, and not specific to extreme-scale architectures, but the problem of dealing with ongoing
disruptive architectural change brings this issue to the fore in the extreme-scale context.

In order to maximize developer productivity, calculations should be expressed in the most abstract form
that is explicit enough to readily map to a computational platform. Research is needed on approaches to
facilitate the design and implementation of higher-level abstractions in applications. This includes com-
piler technologies (code analysis, code transformations, code generation, data structure manipulation, and
domain-specific languages) that can be combined with deep knowledge of algorithms and their mathemati-
cal properties to improve performance and transform code semantics for broader functionality (for example,
to transform a forward PDE simulation also to incorporate optimization or uncertainty quantification).

3.3 Extending software ecosystems to support extreme-scale science

Scientific applications exist as part of a larger ecosystem of HPC software, including libraries, frameworks,
compilers and runtimes, and supporting tools. While the new and different architectures of extreme-scale
systems pose many challenges to software productivity (Section 3.2), which tend to be focused within indi-
vidual applications or libraries, additional challenges arise across the broader HPC software ecosystem, as
the capabilities of extreme-scale computers drive scientific software to new levels of complexity and sophis-
tication. Research will be required to address key aspects of the software ecosystem at extreme scale, such
as:
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• Increasing use of multiphysics and multiscale coupling methodologies, as well as other ways of using
unprecedented computational capabilities (Section 3.3.1)
• Growing reliance on HPC libraries for both performance and code complexity reasons, which must

interoperate at every level (Section 3.3.2)
• Ability to configure and build these libraries, together with other software modules, on systems ranging

from laptops to one-of-a-kind extreme-scale computers (Section 3.3.3)
• Testing, verifying, validating, and debugging large compositions of software on systems with massive,

multilevel parallelism (Section 3.3.4)

3.3.1 New computational frontiers at extreme scale

The rapid growth in computational capabilities available on high-end systems is giving rise to new ways
of thinking about simulations. Parameter studies and design optimizations allow the exploration of a larger
problem space rather than point solutions. Uncertainty quantification (UQ) and sensitivity analysis help
characterize the “error bars” around simulation results, and multiphysics and multiscale coupling provide
much richer models of the physical systems under study. These new approaches not only are computationally
intensive but can require new ways of thinking about the software involved.

Uncertainty quantification methods can be broadly divided into two categories, intrusive and nonintru-
sive. Intrusive formulations build the UQ analysis into the code itself, often requiring extensive changes to
the original code base. Efficient intrusive UQ methodologies and their effective implementation are an im-
portant area of research in the UQ community today. Nonintrusive methods, also known as sampling-based
methods, execute many realizations of the simulation, varying the inputs and/or parameters. Similarly,
parameter studies and optimization typically involve executing many realizations of a simulation with dif-
ferent parameters. While it is conceptually simple and natural to implement these approaches by utilizing
a “driver” external to the simulation code, it is an open research question as to whether this is the most
effective formulation in general. The ability to evaluate an entire ensemble of simulations within a single
invocation of the code may, in some cases, allow for better reuse of intermediate computations and may
expose more, and more useful, parallelism than running the same number of completely separate instances.

But of these “new frontiers,” it is multiphysics and multiscale coupling that often has the most significant
impact from a software development perspective. Simulation codes involving multiphysics and multiscale
coupling are inherently more complex than those that work with only one model or scale. The complex-
ity extends throughout the software stack, from ODE integrators (where different timesteps and implicit-
explicit schemes are typically needed to handle different regions, physics, and scales), to the nonlinear
solver level (where nonlinear elimination may be needed to handle differing nonlinearities), to the linear
solver level (where physics-based preconditioners, Schur complement preconditioners, or block precondi-
tioners are needed to handle various problem components). Moreover, different meshes and discretizations
often must be managed and coupled. The research needed in this important area is a combination of anal-
ysis, algorithms, and software [52]; software productivity issues are front and center, since all approaches
require incorporating software developed by multiple groups.

Completely “problem-neutral” computer science approaches to handle software coupling have proved
inadequate to the task, while more problem-specific approaches under investigation in applications and li-
braries indicate a possible way forward to manage the complexity and deliver efficient algorithms. Multiple
groups have begun experimenting with approaches for describing a complex simulation as a composition of
several pieces and decomposing a complex simulation into a series of simpler pieces. A common compo-
nent in these modular ecosystems is a “data broker” that eliminates the many-to-many relation requirements
inherent in a flat component system by exposing and abstracting the data transfer and transformation re-
quirements. The data broker can greatly simplify interface development and reusability and also provide
clean interfaces to databases and post-processing analysis tools.
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3.3.2 Software composability and library interoperability

In order that application scientists can readily leverage the full palette of algorithms and data structures
provided by HPC libraries, research is needed to ensure that multiple libraries of interest can be used together
within the same application. Applications that depend on one or more of these libraries can face a difficult
transition to incorporate use of additional libraries, and coupling of two applications that depend on different
libraries is particularly challenging.

Composability concerns occur at multiple levels, all of which must be thoughtfully addressed in order
to ensure success. In addition to the prerequisite of compatible build and configuration processes, discussed
in Section 3.3.3, work is needed to ensure that applications can easily use multiple libraries side by side
without conflicts between programming models and resources. Even more difficult challenges arise in soft-
ware compatibility with the need to exchange or control data between different libraries. At higher levels,
many of the issues have to do with the ownership and structure of the data on which the libraries act. If
two libraries are expected to process the same (or closely related) application data, then they must have
compatible approaches to structuring the data. And, for example, multiple libraries cannot control the cre-
ation and destruction of a given data structure. Even for libraries that do not interact directly, concerns arise
regarding whether the programming models on which they rely are compatible. Can the two programming
models coexist in the same application? If so, can the libraries share resources effectively enough to allow
both libraries to operate and obtain the expected levels of performance? While the community already has
some experience (both positive and negative) on which to build, the growing diversity of architectures and
programming approaches will make it that much more challenging going forward to ensure composability
while maintaining performance and portability. Research is needed to identify and catalog issues impact-
ing composability, to identify and refine design patterns that provide composability, and to enhance the
composability of key library and programming model software.

3.3.3 Configuration and build systems

The complete process of software installation—that is, downloading a package, preparing it for compila-
tion, testing, and then installing it for use—is difficult in perhaps unappreciated ways. Because any failure
of the build system can disable the entire package being installed, the build system must be designed to
create actionable diagnostics—a huge task given its internal complexity and the diversity of architectures,
operating systems, compilers, and libraries it must handle. Moreover, error conditions, arising from unfore-
seen interactions between components, far outnumber success states. These problems are multiplied when
a given application relies on multiple libraries, which must not only interoperate appropriately, as described
in Section 3.3.2, but must also be built in compatible ways and linked together. Supercomputer centers face
the complementary challenge of supporting many applications, which may use the same libraries in different
ways and may need them to be built differently for compatibility.

Although it seems mundane and might easily be assumed to have been solved long ago, configuration
and building have a significant impact on software productivity. In a 2002 study, Kumfert and Epperly found
the average perceived overhead due to configuration and build issues was 12%, with some teams reporting
20–30% [54]. In other words, developers and users spend approximately one eighth to one quarter of their
time simply to create a working executable from code that is already written, and (as developers) try to ensure
that others can do likewise. A more recent analysis of two large scientific software projects by Hochstein
and Jiao found that 5–6% of the lines of code in these two applications were build-related, and 37–65% of
version control commits touched at least one build-related file [46]. Further, build failures accounted for
11–47% of all failures in the automated testing regimes of the two packages.

While existing tools provide the basic capabilities needed to configure and build individual packages,
research and development are needed to develop strategies and robust, production-quality tools that can
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support configuration and build of complex composites of multiple, independently developed code modules
and libraries on everything from a laptop or workstation (for development purposes) to one-of-a-kind high-
end systems. Such tools also need to provide strong support for software development, as well as testing,
verification, and validation of workflows, where it is often necessary to rebuild (small portions of) the code
repeatedly with different configurations.

3.3.4 Testing, verification, validation, and debugging

Testing and V&V (verification and validation) are processes that help ensure the correctness of scientific
software, while debugging is the process of isolating and correcting errors. These processes, which are
critical to delivering credible scientific results, are time-consuming and challenging at any scale. How-
ever, extreme-scale trends, such as the massive increase in concurrency and widespread use of multilevel
parallelism as well as the rise of multiscale and multiphysics coupling, will multiply these challenges.

Research and development are needed in many areas in order to improve the efficiency and effectiveness
of testing, V&V, and debugging in extreme-scale situations. Capturing testing and V&V workflows and
automating them is challenging, especially considering the prominent role of human judgment in many
V&V processes. This effort will be further exacerbated by the need to rethink reproducibility at extreme
scale (see Section 3.2.4). At a higher level, we need new approaches and tools to simplify and automate
the creation of tests, for example, based on specifications, which are also sensitive to considerations of
both code coverage (making sure that the tests exercise as many paths through the code as possible) and
resource utilization (minimizing the number and costs while maximizing coverage). Research on effective
integration testing, particularly that related to multiscale and multiphysics code couplings, will be required
to complement the development of the coupling strategies themselves (Section 3.3.1).

3.4 Identifying, developing, and disseminating software productivity and engineering prac-
tices for extreme-scale computing

Software engineering (SE), which can be defined as “the application of a systematic, disciplined, quantifi-
able approach to the development, operation, and maintenance of software,” [47] is central to any effort
to increase software productivity. Software engineering is, in essence, the understanding, capturing, and
systematizing of practices that promote productivity and facilitate their transfer to and use by others.

With software becoming pervasive throughout our daily lives, both the academic study and the indus-
trial practice of SE have grown tremendously during the past decade. A sizable and vigorous SE community
now exists, where researchers and practitioners make available and discuss their software engineering expe-
riences through books, papers, presentations, and other forums.

Contrary to the beliefs of some in the community, however, appropriate software engineering practices
are woefully underused in large-scale scientific projects. Many of these projects do not follow traditional
SE best practices, at least partially because many existing SE practices are not properly tailored for scien-
tific environments [14]. Discussions in the Software Engineering for Computational Science & Engineering
Workshop series [11–14], which has sought to begin to bridge between the computational science and larger
software engineering communities, have highlighted a number of factors contributing to the current sit-
uation. We note that these are fundamental issues in the computational science community, and largely
independent of the scale of the computer systems on which the work is done. However, while it may be pos-
sible to “get away with” some poor software engineering practices at smaller scales, addressing these issues
is imperative for the broad range of code sharing and collaboration needed for next-generation extreme-scale
science.

In this section we outline the following combination of R&D and outreach activities that are needed
to strengthen the understanding and use of software engineering best practices in the DOE computational
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science community.
• “Scalable” software engineering practices for computational science (Section 3.4.1)
• Bringing computational scientists and software engineers together to bridge the communication gap

between the two communities (Section 3.4.2)
• Appropriately tailoring SE practices from the broader software industry for use in computational sci-

ence (Section 3.4.3)
• Pilot projects and case studies to assist in this tailoring (Section 3.4.4)
• Documented examples of successful use of appropriate SE practices in computational science (Sec-

tion 3.4.5)
These activities can also leverage broader community outreach and development efforts described in Sec-
tion 3.5.

3.4.1 “Scalable” software engineering practices for computational science

One reason that scientific developers do not consistently use appropriate SE practices is the lack of appre-
ciation of the need for and potential benefits of using those practices. Part of the problem is the slippery
slope from an individual research code to its becoming central to the work of a group of researchers in a
production setting.

Many scientific codes begin as small, one- or two-person efforts. As both the primary author and the
primary user of the code, the developer is confident of being able to fix any problems that may arise, with-
out using any formal software engineering practices. Moreover, the code is often considered simple and
even exploratory; and developers may defer the perceived overhead of introducing SE practices until some
undefined later time, when they are confident that this avenue of exploration is worth pursuing further.

Often, however, others find the code useful and want to use or modify it. Because the code was originally
developed without such uses in mind, it is often difficult for someone new to begin using and modifying the
code. Similarly, as a code project grows in scale, complexity, and longevity, the developer may at some
point realize the need to introduce SE practices. Unfortunately, at that point, it is often too late in terms of
the effort and expense. On the other hand, if the developers had used some lightweight software engineering
practices from the start, the situation would not be as problematic. Science teams need to consider the
longer-term benefits that could be obtained from some shorter-term costs [15], and their management and
sponsors need to support these shorter-term costs.

Research is needed to develop and disseminate guidance on “scalable” software engineering best prac-
tices that recognize the challenge of the slippery slope of scientific research software development.

3.4.2 Bridging the chasm between software engineers and computational scientists

Exacerbating the lack of appreciation of the potential benefits of SE practices for some in the computational
science community is a distrust born out of prior experience. In the past, well-intentioned but misguided
software engineers suggested the use of software development practices that were inappropriate or too heavy
for the project. These misaligned suggestions result from a lack of domain understanding on the software
engineer’s part. Computational scientists and software engineers often do not speak the same language.
Clearly needed is a closer interaction among software engineers and computational developers to remove
this communication barrier that is preventing the use of appropriate software development practices:
• Software engineers need to be willing to learn from the successes of scientific developers.
• Software engineers need to describe software engineering concepts and practices in terminology that

is familiar to computational scientists.
• Scientists need to recognize a real software development need or problem before they will be motivated

to consider the use of software engineering practices.

ASCR Workshop on Software Productivity for Extreme-scale Science 15



Such interactions, which should be strongly encouraged as an explicit goal of these activities, may take
many forms, including broader venues such as training and workshops (Section 3.5), as well as more indi-
vidualized venues such as pilot projects and case studies (Section 3.4.4).

3.4.3 Development of appropriately tailored software engineering practices

Large-scale scientific software emphasizes various types of software quality goals differently from other
types of software. For example, traditional software quality goals such as reusability or maintainability
are often undervalued in the development of domain applications because of the push for new scientific
results at the expense of well-crafted code. As mentioned many times in the pre-workshop survey, another
area in which large-scale scientific software faces important challenges is testing and V&V [16]. In some
cases, scientists trust the results of their software without the level of testing that would be expected in
other types of software. This situation results, at least partially, from the fact that it is not always clear how
to test all parts of a complex and potentially nondeterministic code (see Section 3.3.4). These problems all
suggest the need for advances in software engineering practices that are appropriately tailored for large-scale
scientific codes. Concepts such as design patterns, object-oriented paradigms, and software inspections are
good candidates to become part of this appropriately tailored set of practices. More research is required,
however, in order to understand how these practices can be tailored to fit within the context and constraints
of large-scale scientific software projects.

3.4.4 Pilot projects and case studies in software engineering for computational science

An important aspect of the development of SE practices tailored for computational science is the opportunity
to put software engineers together with practicing computational scientists for extended periods to allow the
study, from a software engineering research perspective, and refinement of SE practices in “real world”
computational science projects. These studies might take the form of “pilot projects” or longer-term “case
studies.”

Pilot projects. In cases where a scientific team has a specific software development problem for which
the team needs help, software engineers should be paired with the team members to deploy and evaluate
specific practices designed to address that problem.

Case studies. In order to provide even more benefit to specific computational science teams and the
extreme-scale scientific community as a whole, longer-term case studies are needed. In these studies, soft-
ware engineering researchers would work closely with a computational science team over a period of time.
Together, the team and the software engineering researchers would identify both strengths and weaknesses
in the software development process. For any weakness, the software engineering researcher and the team
could work together to identify and tailor software engineering practices to address that weakness. Once the
new practice has been deployed, the software engineering researcher could work with the team to evaluate
the effectiveness of the practice and further tailor it as necessary.

In addition to enhancing the software productivity of the target projects, both pilot projects and case stud-
ies should result in publishable software engineering research, which can also be distilled into best practices
for the broader community. Such work would be a significant source of of documented examples of suc-
cessful SE practices (Section 3.4.5), disseminated to the community through various forums (Section 3.5.2)
to help promote awareness and adoption of software engineering best practices in the DOE computational
science community.
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3.4.5 Documented examples of the successful use of appropriate software engineering practices

One of the primary sociological barriers to the adoption of appropriate software engineering practices is the
lack of examples. The constraints placed on scientific software and the culture within which it is developed
are often quite different from those of more traditional business or IT software. These differences often
lead scientists to conclude that the software engineering practices that work in the business or IT world will
not work for them because “we do not look like them.” In some cases this conclusion may be accurate,
while in other cases it may be a way to avoid a practice they do not want to use. While many scientific
software teams are effectively using appropriate software engineering practices, many of these experiences
are not adequately documented. Effort is needed to capture and document these experiences in a format or
venue that allows other scientists to quickly and easily access and reuse the lessons learned. This work is
closely related to and could be part of efforts to inventory HPC software productivity issues and experiences
(Section 3.1.1), as well as SE pilot projects and case studies (Section 3.4.4), and made available through the
forums discussed in Section 3.5.2.

3.5 Growing an extreme-scale software productivity community

One of the most significant challenges to increasing software productivity among DOE computational sci-
entists is that it is not part of the community culture. If the aforementioned R&D activities are to have an
impact, we need to develop a community of software productivity practitioners as well as researchers by
supporting complementary activities, such as training for software developers (Section 3.5.1) and creating
forums to facilitate communication about software productivity (Section 3.5.2).

3.5.1 Training in software productivity

Few computational scientists receive any formal education or training in software engineering or productivity-
enhancing tools and techniques. Training activities will be important for disseminating productivity prac-
tices to the HPC computational science community. In addition, because library developers have consider-
able experience in developing modular, reusable software components and have already made progress in
developing strategies that enable portability across emerging architectures (see Appendix B), library devel-
opers need to educate application developers on the best use of library components.

Many formats and venues are possible for these training activities. Many conferences offer opportunities
to present tutorials of a half-day’s to a full-day’s duration. ASCR computing facilities reach out to their users
regularly with both in-person and distance training activities, which may range from a hour to one or more
days, depending on the format and content. Longer-format courses or “summer schools” may be useful,
particularly to help train early-career computational scientists (graduate students and postdocs).

From the perspective of workforce development, it may also be useful to encourage the incorporation of
software engineering and productivity into educational programs that train upcoming computational scien-
tists, though this clearly has a much longer time horizon.

3.5.2 Forums for improved information exchange

The scientific community in general encourages interactions and exchanges of information about R&D re-
sults. However, work that could benefit others in a productivity sense is often treated as a means to an end
in the pursuit of new domain-science results as opposed to something interesting and useful to convey in
its own right. Hence, either software developers or reviewers may discount the value of such contributions
to the scientific literature. We must build a stronger community of software productivity practitioners in
which the exchange of productivity-related experiences is encouraged. This can, and probably should, be
done in a variety of ways. Conferences, workshops, and journals are well-recognized vehicles for scholarly
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interactions, and their use for productivity purposes should be encouraged, including, as necessary, the es-
tablishment of new venues to emphasize the importance and increase the acceptance of productivity-related
work. However, the timelines for these venues are relatively long; and productivity information, especially
as it relates to new platforms and techniques, is more valuable the more quickly it can be disseminated to the
community. Therefore, we also recommend the active development of new venues that can facilitate more
rapid and timely interactions. Possible examples are webinars, wikis, mailing lists, and community forums
such as the StackExchange model.

4 Crosscutting Needs and Dependencies

Because of its crosscutting nature, a major initiative in software productivity will be challenging to struc-
ture and manage. We offer these recommendations to help ensure that these investments have maximum
impact:
• Coordination with all major ASCR programs, as well as with other computational science programs in

both science and applied technology areas of DOE (Section 4.1)
• Active promotion of productivity-enhancing practices (Section 4.2)
• Establishment of a Technical Council to help coordinate the investment and engage with the broader

community (Section 4.3)

4.1 Coordination with other R&D programs

A number of established programs within ASCR include research that is relevant to extreme-scale software
productivity, including programs in co-design, applied mathematics, computer science, computational sci-
ence, and SciDAC, as well as exascale architecture research and facilities planning. In many cases, however,
the work may not directly address productivity perspectives or may not be mature enough for widespread
use as a productivity tool. Coordination will be required in order to determine the most effective ways
to extend this synergistic work into productivity contexts, as well as to coordinate with the broader HPC
computational science and software productivity research communities.

As the primary developers of scientific application software in DOE, the other offices within the Office
of Science, as well as DOE’s applied technology offices, should be key partners in the effort to enhance soft-
ware productivity. The ASCR computing facilities are positioned at the crux of the software productivity
challenge and must also be important partners. In addition to providing large-scale, cutting-edge computing
resources to DOE computational scientists, they also bring broad and deep staff expertise in both the hard-
ware and applications, as well as training and other outreach activities to help users get the most out of the
facilities. Moreover, partnership with NNSA is important, given that NNSA researchers have essentially the
same concerns about software productivity as do ASCR and the Office of Science.

Looking beyond DOE, a number of other federal agencies that make extensive use of high-performance
scientific, engineering, and technical computing, such as the Department of Defense and the National
Oceanographic and Atmospheric Administration, also have similar concerns about software productivity.
We therefore recommend engaging with relevant agencies to share experiences and encourage complemen-
tary investments.

4.2 Promotion of productivity-enhancing practices & tools

R&D targeting extreme-scale software productivity is not a guarantee of increased productivity among DOE
computational scientists. The results of the productivity research, both in DOE and in the broader software
community, along with other tools and practices identified as being productivity enhancing, must be adopted
by the developers of computational science applications. However, productivity-enhancing activities often
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are investments that pay off only over a period of time; consequently, some researchers and their sponsors
may not recognize their value, and may not give them a high priority in view of the tension for achieving
new science results and publications. Therefore, it is important to consider ways to change the equation for
computational scientists, to encourage them to make longer-term investments. We must explicitly acknowl-
edge that current methods of generating quality code will simply not work without significant and stable
funding. We need models for sustainable software development (see, e.g., [50]) and software collaboration
in research organizations.

4.3 Establishment of a Software Productivity Technical Council

DOE’s needs in the area of software productivity are distinctive in that they touch upon a number of es-
tablished areas of R&D within ASCR. There are also strong connections to applications, in both science
and applied technology areas of DOE, as well as NNSA. Further, the leadership computing facilities and
NERSC have a prominent role to play. If ASCR is to be successful in raising the levels of software produc-
tivity across DOE science and applied technology areas, it will be critical to understand, track, and engage
with the researchers and managers of other research programs on an ongoing basis in order to ensure the
maximum effect of the software productivity program. To this end, we recommend the creation of a Soft-
ware Productivity Technical Council (SPTC), modeled after several established technical councils, with a
mandate to identify requirements, capabilities, and gaps; coordinate productivity-related R&D; and facili-
tate the dissemination and adoption of productivity-enhancing tools and practices. The SPTC would advise
and assist program managers in addressing the programmatic needs described below.

5 Recommendations

Focused work is imperative to addressing pervasive and urgent problems in extreme-scale software pro-
ductivity for mission-critical computational science. Efforts to improve productivity must be explicit and
deliberate, with research components to tackle issues that are far beyond current understanding. We there-
fore recommend the following:

DOE should sponsor research and development efforts specifically targeted at qualita-
tively improving software productivity for extreme-scale scientific applications. The con-
fluence of computer architecture changes and surging demands for modeling, simulation, and
analysis of complex multiscale and multiphysics phenomena provide both a crisis and an op-
portunity to dramatically change how extreme-scale scientific applications are produced and
supported within the DOE complex. Furthermore, the broader software community has real-
ized tremendous improvements in productivity that can be leveraged directly and indirectly in
our domain. A focused effort to improve productivity is essential to producing the next gener-
ations of extreme-scale applications. By fundamentally changing the extreme-scale scientific
software infrastructure and culture through an ambitious research agenda, we can develop new
methods and approaches for portable, composable, and interoperable applications, libraries, and
tools that will serve as a foundation for computational science discovery.

Our specific recommendations include the following:

1. Characterize and measure extreme-scale software productivity impediments and opportunities.
We must gather, analyze, and categorize software productivity impediments and opportunities in order
to provide insight into fundamental problems and direction for future efforts. We must also identify,
measure, and track metrics for software productivity throughout software lifecycles, with the ultimate
goal of improving key metrics of scientific productivity. (Section 3.1)
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2. Develop software designs that minimize the impact of ongoing computer architecture changes.
We must determine how to achieve good performance on emerging computer architectures while at
the same time provide stability for end users. This work is particularly important for libraries that
insulate domain scientists from architecture-specific details. (Section 3.2)

3. Characterize opportunities for enabling advanced multiphysics, multiscale, and analysis capa-
bilities. Exascale systems open up the opportunity to loosely and tightly couple multiple physics and
scales, as well as to introduce parameter sensitivity studies, optimization, and uncertainty quantifica-
tion. Enabling technologies can greatly improve our abilities to couple existing components and to
move simulation to the ultimate goal of providing an optimal solution with error bars. (Section 3.3.1)

4. Develop composable and interoperable components and libraries. Research is needed to ensure
that our widely used and independently developed software libraries can be readily used in com-
bination in extreme-scale multiphysics and multiscale applications that require the complementary
contributions of diverse teams. Furthermore, application teams can benefit by organizing their own
software into reusable components so that components can be shared across related application efforts.
(Section 3.3.2)

5. Identify, develop, and disseminate knowledge of productivity tools and best practices. Effective
tools and practices provide the most tangible means to improving productivity. Specific focus on
identifying the needs for productivity tools, developing and evaluating solutions to those needs, and
deploying the best tools and practices will accelerate productivity across all activities, independent of
other initiatives. (Sections 3.4 and 3.5)

6. Develop productivity partnerships throughout DOE and other agencies. Many application teams
are facing the same set of challenges described in this report. Effective communication within DOE
and with other federal agencies will maximize our abilities to learn and to leverage knowledge and
capabilities. DOE applications already are being used by other agencies, so partnerships will improve
communication and knowledge sharing. Furthermore, software productivity is intimately connected
to design choices made by other system development teams, such as hardware architecture, program-
ming models, and system software. Software productivity concerns should be taken into account as
these system components are designed, developed, and deployed. (Section 4)

7. Establish a Software Productivity Technical Council. Although productivity is a major concern
for many applications teams, the topic has received little formal or programmatic attention until very
recently. As a result, there is little institutional awareness of existing productivity efforts. Some re-
search teams are aware of productivity requirements, and some have made significant local efforts
to improve productivity within their own scope of influence. The Software Productivity Technical
Council (SPTC) will be a vehicle for gathering requirements and capabilities within DOE and identi-
fying the most important gaps. The SPTC will host presentations by leading research teams, provide
regular status reports to the community, and advise DOE program managers on the technical aspects
of productivity-related efforts. We anticipate that the SPTC will be important in effectively commu-
nicating across the many application development efforts, especially in the early years of building a
software productivity R&D effort. (Section 4)
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A Science Drivers

Section 2 discusses crosscutting productivity issues in developing mission-critical DOE extreme-scale sci-
entific applications. The following four sections provide more details on science drivers in four application
areas: climate (Section A.1), environmental management (Section A.2), fusion energy (Section A.3), and
advanced nuclear reactors (Section A.4). The software productivity challenges encountered by these appli-
cations are representative of those in a much broader DOE simulation portfolio, including applications in
fossil energy, high-energy physics, nuclear physics, chemistry, biology, biophysics, molecular sciences, and
materials sciences, as well as those in NNSA.

A.1 Climate

Climate scientists are asked to provide predictive tools to inform the public and decision makers on climate
change and its impacts. Climate modeling programs in the DOE Office of Science develop models “to in-
form the development of sustainable solutions to the Nation’s energy and environmental challenges [28].”
Climate models are complex multiphysics, multiscale applications. Representing all the internal variability
and other features of the climate system requires several individual models of the atmosphere, ocean, ice,
and land coupled to one another through exchanges of heat, mass, and momentum. Each of these mod-
els is itself a multiphysics application with a variety of subcomponents representing physical, chemical,
and biological processes. In order to provide a diverse community of stakeholders with better estimates of
regional/local changes and climate extremes, ensembles of high-resolution simulations are needed. Cur-
rent high-resolution (∼ 10 km grid spacing) configurations require hundreds of millions of core-hours on
leadership-class computing resources for a small (5-member) ensemble of only 30 simulated years each.
For future extreme-scale computations and the science needed to inform climate-related decisions, larger
ensembles at subkilometer resolution will be desired, with associated uncertainty estimates.

Figure 2: Chlorophyll concentration from an eddy-resolving ocean simulation that includes a biogeochemi-
cal model to explore carbon uptake and ocean acidification.

Climate scientists since the 1960s have been implementing models on the most advanced computing
architectures while also preserving and advancing the fidelity of climate simulations as they have evolved.
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The last major computing transition in the early 1990s required roughly five years to translate climate models
from vector-based hardware to the parallel message-passing programming model that has persisted until the
present. Since then, climate scientists have taken advantage of Moore’s Law and the relative stability in
programming models to add far more capability to climate models, couple more components, and increase
resolution for more accuracy and detail. Today’s climate modeling efforts involve hundreds of climate
scientists, applied mathematicians, and computer scientists working on a highly complex code base of over
1.2 million lines (mostly Fortran) written over decades of development.

DOE climate scientists are now initiating a project to transition this large and complex modeling system
to advanced architectures and prepare for exascale systems while maintaining and advancing the scientific
capabilities. Early experience on accelerated systems has shown that even with substantial effort and exten-
sive refactoring, only moderate factors (∼ 2x) of performance improvement can be obtained [60] because
of the lack of well-defined kernels and the broad mix of algorithms deployed. Like previous transitions, the
path to exascale will require exploration of new algorithmic choices and a significant investment in soft-
ware engineering as we revisit software design choices and develop testing to ensure quality throughout the
transition. Challenges will include the following.

Characterization and measurement of software productivity and impediments. Climate modelers
target a throughput of 2-10 simulated years per CPU day to maintain a reasonable workflow and achieve
the required ensemble simulation results. But performance is only a small part of overall productivity.
From past experience, high-resolution grand challenge simulations take five years from the start of model
configuration to the publication of the first result. Because of the complexity of the system and the lack
of overall productivity metrics, it is unclear how best to reduce that five-year timescale. New software
productivity metrics and consistent measurement of those metrics are needed (Sec. 3.1).

Development of performance-portable climate models on diverse extreme-scale systems. A sub-
stantial effort in refactoring and algorithm development will be required to create performance-portable cli-
mate models for exascale (Sec. 3.2). A recent NRC report on climate modeling [10] pointed to the need for a
community-wide high-performance climate modeling software infrastructure. Such an infrastructure would
feature shared abstractions that enable performance portability, adaptability to rapid changes in underlying
architecture, and ease of programming for nonexpert developers.

Climate model testing and reliability. During the transition, the model must be continuously tested
to ensure trust in the model solutions. Currently, climate models are validated against the historical climate
record for a number of observed variables. Only a fraction of the code is routinely unit tested, typically in
the infrastructure routines where functionality is better defined and answers can be verified. Unit testing
in other cases is inhibited by the lack of data or reference solutions. The complexity of a large production
climate code presents too many options to completely test all combinations of potential user choices. Better
testing coverage and methodologies are needed (Sec. 3.3.4), recognizing also the limitations of current bit-
reproducibility tests and the challenges of resilience (Sec. 3.2.4).

Use of high-performance libraries and tools. Use of libraries and tools would help the goal of perfor-
mance portability (Sec. 3.3), but use of libraries and tools within the climate community has in the past been
inhibited by the fragility of software (e.g., parallel I/O), lack of long-term support, lack of language support,
portability problems, or software design that requires too many modifications to the climate model in order
to incorporate the library or tool.

Scalable and effective software processes. The large number of developers with varying software
expertise poses significant challenges for a large, distributed climate modeling project. Current processes in
the climate community utilize centralized repositories and a relatively small group of software engineers. A
more distributed and scalable software process is needed but will require training in and adoption of proven
software methodologies that can be customized for large, distributed model development teams (Sec. 3.4).
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A.2 Environmental management

The Office of Environmental Management (EM) oversees the remediation and closure of DOE sites stor-
ing legacy waste from the development of nuclear weapons and related technologies. Although significant
cleanup progress has been made, several large and technically complex sites remain, with total lifecycle cost
estimates between $272 and $327 billion. The groundwater and soil contamination alone includes more than
40 million cubic meters of contaminated soil and debris and 1.7 trillion gallons of contaminated groundwa-
ter at 17 sites in 11 states [61]. At these complex sites the conservative simplifications and abstractions
used in the past to estimate the fate and transport of contaminants can lead to overly conservative and costly
remediation and closure scenarios. For the complex cleanup problems that remain, the highly uncertain and
multiscale nature of the subsurface hydrology and geochemical transport must be treated mechanistically,
requiring advanced modeling and data analysis techniques in order to inform a comprehensive approach
to risk and performance assessment. To address this urgent need for transformational solutions, EM initi-
ated the Advanced Simulation Capability for Environmental Management (ASCEM) program in 2010 [3].
The expectation of DOE-EM and the earth science community is that programs such as ASCEM can move
beyond existing regulatory codes, significantly reducing reliance on conservative abstractions and simplifi-
cations through the use of advanced and emerging computational methods.

Figure 3: Simulations of complex geochemistry and hydrology at the Savannah River F-Area seepage basins
capture the retardation of the uranium plume, prior to any remedial action. Sorption of uranium depends
on the pH, and hence, the uranium plume (top) lags behind the acidic front of the waste water (bottom).
Manipulation of pH is a key ingredient in controlling uranium migration in the future [39]. ASCEM tools
under development will support simulations and analysis of the effects of ongoing and future remedial
actions leading to better projections of the time and cost required to meet remedial goals.

Subsurface flow and transport are governed by a particularly challenging suite of coupled multiscale
processes (including surface and subsurface flows, biogeochemical reactions, and thermal-mechanical de-
formations) occurring in highly heterogeneous subsurface environments with external forcing. Exacerbating
the complexity is the often-limited information about the heterogeneous distribution of subsurface flow and
transport properties and reaction networks. Consequently, risk and performance assessment uses a graded
and iterative approach to underpin scientifically defensible decisions and strategies. This approach first es-
tablishes simplified models and then iteratively enhances geometric and process-level complexity to identify
and characterize the key processes and assumptions that are needed to efficiently reach a defensible decision.
ASCEM must design its approach and tools to handle this workflow, not only to be flexible and extensible,
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but also to leverage an increasingly powerful and diverse set of computational resources. To achieve this
goal, the ASCEM program has identified common themes found in multiscale and multiphysics applications
and has assembled an interdisciplinary team to leverage advances from various DOE SC programs, ASC,
and earth science. This effort is in its infancy and faces many of the challenges outlined in Section 3. At the
heart of these challenges for ASCEM is the need to develop a new approach to the lifecycle of software tools
in the earth sciences. In particular, development and collaboration tools continue to advance, enabling much
more agile approaches that can make use of hierarchical and automated testing. Furthermore, languages
and design methodologies continue to advance, improving our ability to reduce long-term maintenance and
refactoring costs. These advances could enable a much more efficient approach to development and mainte-
nance of regulatory codes, whose strict quality assurance requirements have significantly hindered adoption
of new algorithms and architectures. Key software productivity challenges include the following.

Characterization and measurement of software productivity and impediments. Productivity of
developers and users of subsurface flow and reactive transport simulation codes has not been measured
or tracked in the past. Consequently, there is little understanding of the true cost of developing current
regulatory codes. For example, despite their long history, there is no record of the impact that design and
testing practices have had on the cost of adding new capabilities or supporting new architectures. It is
imperative that metrics of software productivity such as these (Section 3.1.3) be developed to help generate
best practice guidelines for both developers and users (Section 3.4.3).

Embracing of continual change to enhance productivity. Challenging science questions naturally
drive the demand for higher-fidelity predictive simulations, while emerging architectures demand higher
levels of parallelism in algorithms and implementation. A new, modular, hierarchical design of integrated
tools that addresses directly these facets of the software lifecycle (Section 3.2.1) will greatly enhance over-
all productivity. Specifically, this flexible and extensible design would provide a suitable framework to
encapsulate and refactor key computational kernels, as well as legacy codes and tools.

Hierarchical testing tools and techniques. A hierarchical testing framework that provides significant
automation for execution, reporting, and analysis is critical to productivity in the extreme-scale settings
(Section 3.3.4). Specifically, the positive impact of testing on productivity is observed in the efficiency and
confidence with which components can be refactored and in the ability to demonstrate reproducibility across
platforms. In addition, it enables the efficient migration of code from the research branch, through stable
community code releases, to fully qualified regulatory releases (NQA-1 [48])

Support for flexible nonlinear workflows. A critical feature of EM applications is the integration of
observations, modeling, and simulation in a nonlinear iterative workflow that informs the graded approach to
supporting decisions for cleanup and monitoring. This nonlinear iterative workflow is increasingly found in
extreme-scale-enabled high-impact science, where the need for fundamental understanding drives analysis
beyond isolated high-fidelity simulations (Section 3.3). But, this workflow is inherently difficult to manage
and requires new interfaces and tools to support productivity.

Productive software development with an interdisciplinary team. The complexity of both the science
in EM applications and the software on extreme-scale architectures is driving the need for truly interdisci-
plinary development teams. To be productive, however, an interdisciplinary team requires significant train-
ing in order to build a common understanding of both the application modeling and the simulation needs, as
well as modern agile software design, development, and testing practices (Sections 3.4.1 and 3.5.1).

Multiscale algorithms, frameworks, and libraries. The steady increase in computational power is
driving interest in high-fidelity multiscale simulations. Multiscale methods are in their infancy, however,
and so a flexible modular approach is needed to support algorithmic research on emerging architectures
(Section 3.3.1). This approach should maximize code reuse and leverage existing numerical libraries.

A focused effort to address these complex software productivity challenges is needed in order to realize the
potential benefits of emerging computational power.
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A.3 Fusion energy sciences

Fundamentally, the fusion of light nuclides forms the basis of energy release in the universe, which can
potentially be harnessed and used as a clean and sustainable supply of energy. The development of fusion
energy to meet national energy needs is a complex, international endeavor, with the next magnetic-fusion
plasma confinement device, ITER [49], having an estimated construction cost of $20B. It is estimated that
the integrated cost of an ITER discharge, of which there will be approximately 10 per day, will approach
$1M. Consequently, close collaboration between experiment and simulation is essential, with computational
modeling used to guide the planning of experimental campaigns and analyze the results of each shot. Studies
emphasize the imperative for whole-device modeling that integrates nonlinearly-coupled phenomena in the
core plasma, edge plasma, and wall region on time and space scales required for fusion energy production
[62].

Figure 4: Flux driven turbulence (fluctuating electrostatic potential), filling the whole plasma volume in
diverted DIII-D geometry. This simulation by the XGC-1 code (24M CPU hours, engaging 100K cores
of the OLCF Jaguar system for 240 hours) integrates plasma dynamics in the complex edge with the core
region of the DIII-D Tokamak plasma.

Because achieving high-fidelity predictive modeling on extreme-scale computing systems requires the
combined contributions of diverse teams for various aspects of simulation and analysis, software produc-
tivity challenges are at the forefront of fusion simulation concerns. A sizable body of code exists, which
has been carefully validated against experiment and is accepted by the community. Many of these codes
were originally developed years and even decades ago and are not designed to easily expose the degrees of
parallelism required to scale well on current HPC systems, much less future systems. On the other hand,
many of these codes continue to be developed and their models refined even today. Many in the community
tend to be leery of efforts to significantly revise such codes for future architectures, as well as efforts to
incorporate them into integrated whole-device models, because of concerns about divergence of code bases
and the validation challenges. On the other hand, wholesale re-creation of the capabilities of this software
base in new codes that are more friendly to future architectures and to multiphysics coupling also raises
concerns about validation, as well as time and expense [40] in a period where FES budgets in the DOE have
been stretched very thin.

Regardless of which path forward is chosen (probably at the level of individual codes or modeling
capabilities), the computational fusion community will have to make extensive use of software productivity
techniques in order to deliver the needed simulation capabilities in a form ready for extreme-scale systems
under tight constraints on time and budget. Key concerns are as follows.

Modernization of legacy fusion codes for new many-core computing architectures. Novel program-
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ming approaches are needed in order to achieve scalability and preserve investment in large and trusted code
bases. These needs span throughout both fundamental fusion applications and numerical software libraries
on which they depend (Section 3.2).

Fusion simulation testing, verification, and validation. Proper cross-validation of laboratory experi-
ments with a suite of advanced codes in regimes relevant for producing practical fusion energy will demand
systematic testing across a large parameter space (Section 3.3.4).

Advanced coupling methodologies. Coupled multiphysics modeling of fusion plasmas, also referred
to as whole-device modeling or integrated modeling, is in its infancy. However, experience to date suggests
that such simulations pose many physical, mathematical, and computational challenges that will require
extensive research (Section 3.3.1).

Integrating data analytics with simulations. We must address “big data” challenges associated with
avoiding macroscopic disruptive events in fusion-grade plasmas.

Development of community-wide fusion modeling software infrastructure. Shared higher-level ab-
stractions are needed in order to enable portability and adaptability to rapid changes in underlying archi-
tecture, as well as to ease programming for nonexpert developers (Section 3.2.5). Additional needs for a
fusion community codes include build systems (Section 3.3.3), support for composability (Section 3.3.2),
and integration testing (Section 3.3.4).

Improved fusion community software development practices and training. Computational fusion
teams have widely varying software expertise and preferences. In the push for integrated whole-device
modeling, there is a strong need for software methodologies that can more effectively scale across multiple
distributed teams (Section 3.4). Also needed is outreach help to train new staff on productivity practices
(Section 3.5).

A.4 Nuclear energy

The design, certification, and operation of the existing fleet of nuclear reactors depend on sophisticated
computational tools that have been developed and improved continuously since the advent of the nuclear
era. Reactor analysis codes aim to predict key macroscopic quantities relevant to the safe and efficient op-
eration of reactors. These include reactivity, power distributions, temperature profiles, material integrity,
and detailed isotopics both in quasi-steady-state and transient (including accident) scenarios. The underly-
ing computational methods involve various approximate solutions to the quasi-linear Boltzmann transport
equation, the Navier Stokes equations with conjugate heat transfer, and the Bateman equations for isotopics,
coupled to mechanistic models of macroscopic fuel properties and transient behavior.

In the early days the computational approaches were based on significant a priori simplifications to the
governing equations (e.g., point kinetics model, porous flow) to render them computationally feasible. Over
time, as new algorithms have been discovered and computer power has increased, these methods have been
slowly replaced by models of continuously increasing physical fidelity, such as multigroup transport, Monte
Carlo methods, and large eddy simulations.

From the perspective of the end user—the analyst, designer, or licensing authority—reactor simulation
tools must meet certain rigid requirements in terms of usability, time to solution, accuracy, and reproducibil-
ity. For example, the end user must be able to develop arbitrary reactor models in reasonable time (one
month) without detailed knowledge of the inner workings of the code; for design scoping studies a single,
fixed-point power distribution calculation must take no more than several minutes to be of practical use;
estimates of sensitivities to simulation results based on the uncertainty in input data must be provided for
each calculation; the ability to obtain bitwise reproducibility of simulation results is mandated by licensing
authorities. Furthermore, new methods have to be rigorously validated against experimental data.

The nation has recently invested in several significant simulation programs aimed at pushing forward the
state of the art in reactor simulation tools. The CASL Hub aims to integrate near-term and existing advanced
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Figure 5: Large eddy simulation of turbulent coolant flow through a 217-pin nuclear reactor assembly.

simulation capabilities into an end-user tool (’virtual reactor’) that can be adopted immediately by end users
to tackle outstanding industry problems. The CESAR co-design center is focusing on the development and
impact of next-generation methods for exascale architectures.

Faster time to solution for more detailed physics models defines only one aspect increased overall pro-
ductivity for end users. Improved computing capability must co-exist with several key aspects of the simu-
lation lifecycle. Some key examples are as follows.

Flexible software architectures. Many legacy reactor physics packages suffer from an exponential
proliferation of physics subroutines—minor variants of each physics module for each physical scenario—
resulting in unmanageable software suites. Part of this is the result of different numerical requirements for
different parameter regimes, but more often it is the result of poorly engineered software. In order to increase
productivity, software architectures are needed that enable reuse of basic physics models for a broad range
of end-user applications, ranging from transient accident scenarios to steady-state power profiles at startup.
(Sections 3.3 3.4).

Reproducibility for licensing. Licensing authorities depend on reactor analysis codes to adjudicate
new designs. Historically, authorities have required bitwise reproducibility of results as a demonstration of
code consistency. This level of constraint is likely unnecessary and infeasible on next-generation systems.
The interaction between strict licensing requirements, testing, verification, and solution reproducibility on
emerging systems is a key productivity question for next-generation codes (Sections 3.3.4 and 3.2.4).

Computational meshes for physics coupling. Reactor designers need to quickly evaluate concepts
based on geometric modifications to existing designs. Often, re-meshing new geometries, particularly for
coupled neutron-fluid problems, can be a several-month, painstaking process. Overall productivity would
be greatly enhanced if this timeline could be reduced, either by developing more robust meshing methods,
or by exploring innovative algorithms (particle based, cut-cell, etc.) (Section 3.3.1).

Propagation of uncertainty through coupled codes. All reactor neutronics calculations rely on large
amounts of experimental data that encode the probability of a vast array of different neutron-nuclide inter-
actions. The accuracy limits of this data are fairly well understood, but their impact on solutions to the
transport equation, particularly in multiphysics calculations (e.g., transport-fluids-fuel), is much less well
understood. The net effect is that overly precise meshes are employed, yielding solutions whose accuracy is
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not warranted by the data accuracy. Better understanding of the propagation of uncertainty through coupled
physics calculations could greatly reduce overall analysis time for future codes (Section 3.3.1).

Community frameworks for pre- and post-processing. Much of the time in the overall workflow
of reactor analysis is spent in both setting up and analyzing data. While community visualization and
meshing software can be leveraged for much of this work, other related issues have been less well addressed
by tool designers. In-situ data analysis, analytics packages for data on complex meshes, and real-time
control visualization are areas where community efforts could be profitably leveraged by the nuclear energy
community (Section 3.3).

Development of software architectures that enable new algorithmic developments to be adopted
in complex production codes. In the era of exascale computing existing production codes must be able
to take advantage of the research of exascale methods without being completely rewritten. This work re-
quires careful thought into how to refactor production codes to allow targeted improvements appropriate for
exascale architectures (Sections 3.2 and 3.4).

ASCR Workshop on Software Productivity for Extreme-scale Science 29



B HPC libraries: Exemplars for enhancing scientific productivity

Scientific libraries have long been exemplars of rigorous software engineering efforts. The advantages of
developing and using these libraries are clear from the numerous applications that have benefited from their
use. Even so, we have much progress to make, both in making existing libraries better and in increasing the
fraction of scientific software that is delivered in this way [42]. It is not too strong to say that the default
approach for all scientific software should be to make it modular and reusable. A developer first should
have to defend why new development is required (and not obtained from existing components) and then
should design and develop the new functionality so it is modular and reusable, or defend why doing so is
not appropriate.

B.1 Attributes of successful libraries and tools

The value proposition of DOE software libraries is that a client can obtain suitable functionality from an
external source such that the combined functionality, performance, ease-of-use, and reliability outweigh
the alternative of developing a proprietary equivalent. Historically, mathematical libraries for dense linear
algebra have provided a clear advantage for users. Data structures are easy to standardize, performance
improvements from optimal implementations are substantial, and the most robust implementations require a
great deal of numerical algorithms expertise to implement correctly. LINPACK [32] and EISPACK [64] were
seminal efforts, eventually replaced by BLAS [1, 29, 33, 55, 56] and LAPACK [5], which are unmitigated
successes. Furthermore, these packages have sustained reliability and versatility because their interfaces
have survived numerous architecture changes, new algorithms continue to be added, and each package has
an extensive test suite [34] that ensures confidence in development and refactoring of optimized implemen-
tations. There are certainly use cases for which BLAS and LAPACK are not optimal (e.g., stiffness matrix
computations for some finite element applications), but even in those cases an application developer has to
provide a well-designed and well-implemented alternative in order to obtain better performance, and is then
prohibited from accessing the rich collection of functionality that BLAS and LAPACK provide.

The advent of MPI and the relative stability of programming models during the past two decades have
enabled the development of HPC libraries for parallel meshing, discretization, solvers, visualization, I/O,
and other required functionality. For example, numerical packages within the FASTMath project [18],
including BoxLib [8, 9], Chombo [2, 17], hypre [37, 38], MOAB [67, 68], PETSc [6, 7] SUNDIALS [45,
69], SuperLU [57, 58], and Trilinos [43, 44], and others such as PyClaw [4] and MOOSE [41], have a strong
track record of scientific application impact by providing scalable performance, good and stable interfaces,
a large collection of functionality, rigorous test suites, and continued growth in capabilities.

B.2 Focus on modularity and reusability

Almost any scientific application can be designed for modularity and implemented as a collection of reusable
components. However, doing so does require extra effort, additional skills, and attention to details not
required for single-use source code. Even so, the exercise of developing a domain model for an application,
including the application’s description of the equations that must be formulated and solved, has intrinsic
value [36]. The application domain model can be used to define application-specific modules that may be
of value to other projects and can in fact become library components themselves. Furthermore, the domain
model helps clarify how an application can interface with external entities such as solvers and provides the
proper abstraction layer that permits solvers to be integrated with minimal incidental coupling and optimal
cohesion.

Application teams have adopted some level of modularity and reusability and have gradually moved to
incorporating solvers, physics packages, and other services as external dependencies. However, much can
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be gained by expanding this approach. Eventually, much of the application software that is written can be
made sufficiently modular to allow a striking increase in flexibility to incorporate a diverse range of physical
models and numerical algorithms.

B.3 Abstraction layers and usage strategies

Use of DOE numerical software libraries comes with nontrivial risks. The decision to adopt a capability
and put its use on the critical path to success requires some risk mitigations. In software design, one proven
strategy is to introduce an abstraction layer, that is, to encapsulate the external functionality in an interface
where any given library is one option to providing the service, an option that can be replaced by another
service provider or can be used side by side with another provider. At another level, abstraction layers are
commonly used within high-performance libraries to protect applications from the details of algorithmic
implementations.

The same abstraction layer that protects applications from particular library details can often be part
of numerical software libraries themselves, instead of within each application code, through the use of
“wrapper libraries.” For example, PETSc’s abstract linear solver interface supports solvers from hypre,
SuperLU, Trilinos, and several other external packages. Similarly, there is support for Chaco, Parmetis,
Scotch, and Zoltan within the partitioning interface. Thus, applications can have a wide variety of choices
for algorithmic implementations without requiring a great deal of interface code that they must maintain.

Abstraction layers are useful risk mitigations, but they come with their own risk: too many abstraction
layers. At some level, concrete functionality must be invoked, and complicated code must be written in terms
of some specific interface. Furthermore, specialized abstractions can lead to repeated implementations of
concrete adapters for two or more very similar abstraction layers.

Therefore, the client of a library must either create an abstraction layer to encapsulate calls to the library,
or directly use the library’s interface, or use some combination of these two options. The right choice is
determined by factors such as the following: (i) How probable is it that the given library will be replaced by
or used with another library to provide the service? (ii) How difficult is it to define an abstraction layer to
encapsulate the library? (iii) Is there a performance or complexity penalty inherent in creating an abstraction
layer? (iv) Is the library reliable enough to be trusted as a “must-use” component?

Use of third-party software libraries can be a tremendous productivity and capability benefit. At the same
time, issues in interfacing with and depending on these libraries must be carefully considered in application
design and implementation. In an ideal world, almost all scientific software would be written to be modular
and reusable, but this ideal is tempered by constraints of time and skill.

B.4 Regression testing and backward compatibility

To effectively use a third-party library, application developers must be able to trust that updates to the li-
brary will maintain compatibility and avoid regressions. For library developers, these commitments are very
demanding and require a level of investment in staffing, testing infrastructure, and software design that is
far more costly than for single-purpose efforts. A comprehensive unit test suite, a commitment to avoid
interface changes, and rapid response to regressions all require a large commitment on the part of library
development teams. Likewise, application development teams must embrace a comprehensive integration
testing process to ensure that updates and changes to individual components do not adversely affect appli-
cation end users. Ideally, developers of an application that relies on third-party software components should
have the capability to reconstruct any version of the integrated application by composing the corresponding
versions of the individual libraries from which it was originally built.
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D SWP4XS Workshop Position Papers
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• John Mellor-Crummey, Improving Software Productivity for Extreme-scale Systems with DSLs

ASCR Workshop on Software Productivity for Extreme-scale Science 39

http://www.orau.gov/swproductivity2014/papers.htm


• Mark Miller, A Scalable Mesh and Field Data Source that is both Virtual and Tunable

• Ron Oldfield, Nathan Fabian, Kenneth Moreland and David Rogers, Productivity Challenges for In-
tegrating Simulation and Analysis
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Thomas Ndousse-Fetter (ASCR), Dorothy Koch (BER) and John Mandrekas (FES)

8:50 - 9:30 Scientific Software Productivity Challenges at Extreme Scale

Hans Johansen (LBNL), Lois Curfman McInnes (ANL), Mike Heroux (SNL) and Phil Jones (LANL)

9:30 - 9:45 Results of Pre-Workshop Survey on Extreme-Scale Software Productivity

Jeffrey Carver (Univ of Alabama)
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10:30 - 11:00 Transforming computational science software research for extreme-scale computing:

Patterns and best practices
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● Charles Ferenbaugh (LANL), Software Engineering Issues in Moving Legacy Codes to Future

Architectures

● Ron Oldfield (SNL), with Nathan Fabian, Kenneth Moreland and David Rogers, Productivity

Challenges for Integrating Simulation and Analysis

● Lisa Childers (ANL), with Venkatram Vishwanath, Tom Uram, Hal Finkel, Jeff Hammond,

Kalyan Kumaran, Paul Messina and Michael Papka, Toward Improved Scientific Software

Productivity on Leadership Facilities: An Argonne Leadership Computing Facility View

● Ivan Bermejo-Moreno (Stanford Univ), Position Paper on Testing and V&V

● Anshu Dubey (LBNL), Preparing Mature Codes for Generations of Heterogeneity

11:00 - 12:15 Concurrent Breakout Sessions #1

12:15 - 1:30 Working Lunch

Speaker: Douglass Post (DoD High Performance Computing Modernization Program and the

Carnegie Mellon Software Engineering Institute)

Addressing Application Software Productivity Challenges for Extreme-scale Computing

1:30 - 2:00 Outbrief 1; Q&A

2:00 - 2:30 Bridging the gap between domain science applications and computational science

software:  Research and development needs

Introduce Topic 2 Questions, Lightning Presentations

● Al Geist (ORNL), with David Bernholdt and Barney Maccabe, Resilience is a Software

Engineering Issue

● Roger Pawlowski (SNL), with Eric Cyr, Challenges for Component-based Multiphysics PDE

Codes on Multicore Architectures
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● Paul Hovland (ANL), with Barry Smith, Marc Snir, Lois Curfman McInnes and Boyana Norris,

Exposing and Expanding Compiler Technologies to Improve Software Productivity in

Developing Mathematical Libraries and Simulation Codes

● John Mellor-Crummey (Rice Univ), Improving Software Productivity for Extreme-scale Systems

with DSLs

● Samuel Williams (LBNL), with Brian Van Straalen and Leonid Oliker, Productive Extreme-Scale

Computing via Common Abstract Machine Models, Programming Models, and Integrated

Performance Modeling

2:30 - 3:45 Concurrent Breakout Sessions #2

3:45 - 4:15 Break

4:15 - 4:45 Outbrief 2; Q&A

4:45 - 5:15 Lightning Presentations: Software engineering and community issues

● Jeffrey Carver (Univ of Alabama), Applying Appropriate Software Engineering to Exascale

Software Development

● Andy Terrel (Continuum Analytics), with Chris Kees, Aron Ahmadia, Dag Sverre Seljebotn

and Ondrej Certik, State of Scientific Software Stacks; also Andy Terrel and Matthew Turk,

HPC Communities of Practice

● Andrew Salinger (SNL), Component-Based Application Development; also Software

Engineering Best Practices

● David Bernholdt (ORNL), Software as “Instrumentation” for Computational Research

5:15 pm Wrap-up, Adjourn for the day (dinner on your own)

Tuesday, January 14 (8:00 am - 1:00 pm)

8:00 am Continental Breakfast

8:30 - 8:45 Summary of Day 1, Review Agenda for Day 2

8:45 - 9:45 Panel Discussion and Q&A

Panelists: John Cary (Tech-X Corporation)

Bill Collins (LBNL)

Kevin Fall (Software Engineering Institute, Carnegie Mellon Univ)

Bill Gropp (Univ of Illinois at Urbana-Champaign)

Robert Harrison (Stonybrook Univ and BNL)
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Computational science software productivity at extreme scale: Short-term/long-term

priorities
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12:45 - 1:00 Workshop wrap-up, review timeline, process and assignments for report

1:00 pm Workshop adjourns (box lunches to go)
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