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The Exascale Operating Systems and Runtime (OS/R) Software Technical Council was con-
vened by the U.S. Department of Energy (DOE) Office of Science and National Nuclear Security
Administration (NNSA) to develop a research agenda and plan to address the OS/R challenges
associated with future extreme-scale systems.

The technical council met from March 2012 through October 2012, concluding with an open
workshop held October 3—4 in Washington, DC. Their charter comprised the following tasks:

e Summarize the challenges of exascale OS/R.

e Assess the impact on exascale OS/R software requirements from facilities and production
support, applications and programming models, and hardware architectures.

e Describe a model for interaction between DOE-funded exascale OS/R research to vendors
building supported products. The model must allow proprietary innovation, encourage APIs
to allow interoperability and portability, and define a minimum set of requirements for func-
tionality.

e Identify promising approaches to addressing challenges and requirements by engaging the
HPC research community and by drawing on novel ideas from other related areas such as
embedded computing and cloud computing.

e Articulate dependencies, conflicting requirements, and priorities within the OS/R research
agenda.

e Submit findings to the DOE Office of Science and NNSA in a report.
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Executive Summary

U.S. Department of Energy (DOE) workshops and reports have identified four key exascale chal-
lenges: dramatically improving power efficiency; improving resilience in the presence of increasing
faults; enabling efficient data movement across deepening memory hierarchies and new storage
technologies; and managing dramatically increased parallelism, especially at the node level. Soft-
ware solutions that address these challenges must also improve programmability, expanding the
community of computational scientists who can use leadership-class platforms. To address these
challenges, DOE must develop new techniques, novel designs, and advanced software architectures
for next-generation exascale software infrastructure. In this report, we discuss challenges and ap-
proaches to exascale operating system and runtime (OS/R) software.

The Exascae Operating Systems and Runtime (OS/R) Software Technical Council canvassed
hardware architects, application programmers, parallel tool developers, DOE high-performance
computing (HPC) facilities, and the vendors that sell and support integrated platforms. After
considering the collective requirements of these constituents and examining the future research
challenges and current software gaps, the council recommends that DOE invest in targeted ad-
vanced computer science research and in specific coordinating activities to enable the effective and
successful development of anticipated exascale systems.

Computer Science Research Areas

o Lightweight message and thread management: In order to hide latency and support dynamic
programming environments, low-level message handling and lightweight thread activation
must be co-optimized. New techniques are needed to handle lightweight and resilient message
layers; scalable message-driven thread activation and fine-grained active messages; global
address spaces; extremely large thread counts; buffer management, collective operations, and
fast parallel reductions; thread scheduling and placement; and improved quality-of-service
(QoS) and prioritization.

e Holistic power management: Extreme-scale systems will manage power and energy as a first-
class resource across all layers of software as a crosscutting concern. Novel techniques are
needed for whole-system monitoring and dynamic optimization; trading of energy for resilience
or time to solution; power-aware scheduling and usage forecasts; goal-based feedback and
control strategies; coscheduling; and adaptive power management of storage, computing, and
bandwidth.

e Tools: Extreme-scale OS/Rs need low-level mechanisms in order to support dynamic adapta-
tion, performance and power optimization, and debugging. New concepts and approaches are
needed to enable extremely lightweight performance data collection; thread and task-based
performance attribution and debugging controls; low-overhead asynchronous event handling
for shared-control tools; whole-system collection and synthesis; and feedback loops to enable
autonomic real-time performance and power tuning.

e Resilience: Extreme-scale OS/Rs must support scalable mechanisms to predict, detect, in-
form, and isolate faults at all levels in the system. Therefore, resilience is a crosscutting
concern. The OS/R must be resilient and support an array of low-level services to enable
resilience in other software components, from the HPC application to the storage system. In-
novative concepts to support multilevel, pluggable collection and response services are needed.

e OS/R architecture: Extreme-scale systems need agile and dynamic node OS/Rs. New designs
are needed for the node OS to support heterogeneous multicore, processor-in-memory, and
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HPC-customized hardware; 1/O forwarding; autonomic fault response mechanisms; dynamic
goal-oriented performance tuning; QoS management across thread groups, 1/0O, and messag-
ing; support for fine-grained work tasks; and efficient mechanisms to support coexecution of
compute and in situ analysis.

e Memory: Deep hierarchies, fixed power budgets, in situ analysis, and several levels of solid-
state memory will dramatically change memory management, data movement, and caching in
extreme-scale OS/Rs. Clearly needed are novel designs for lightweight structures to support
allocating, managing, moving, and placing objects in memory; methods to dynamically adapt
thread affinity; techniques to manage memory reliability; and mechanisms for sharing and
protecting data across colocated, coscheduled processes.

e Global OS/R: Extreme-scale platforms must be run as whole systems, managing dynamic
resources with a global view. New concepts and implementations are needed to enable collec-
tive tuning of dynamic groups of interacting resources; scalable infrastructure for collecting,
analyzing, and responding to whole-system data such as fault events, power consumption,
and performance; reusable and scalable publish /subscribe infrastructures; distributed and re-
silient RAS (reliability, availability, and serviceability) subsystems; feedback loops for tuning
and optimization; and dynamic power management.

Coordinating Activities

e Software stack coordination: The DOE X-Stack research projects are working broadly on
research software to enable exascale computing. Some of those projects include efforts on
upper-level run-time systems to support programming models, advanced I/0, fault tolerance,
etc. DOE OS/R research must be aware of these projects and collaborate where appropriate
on X-stack upper-level run-time layers that could impact the features or designs of low-level
OS/R components.

e Codesign coordination: At the heart of a large system is the OS/R software. It both manages
the low-level hardware and provides interfaces for upper levels of software. OS/R features
both influence and are influenced by novel hardware features and new programming models.
DOE supports an active codesign community; partners include key DOE applications and
the hardware companies. Exascale OS/R software research must be tightly integrated within
the broader DOE plans for developing and deploying exascale platforms and scientific ap-
plications. The OS/R Technical Council recommends that research projects enthusiastically
participate in codesign and describe their plans accordingly.

e Vendor integration: Exascale OS/R research projects must articulate a clear path for inte-
grating research results into future extreme-scale systems supported by the HPC industry.
In order to facilitate collaboration, open source is a vital part of this research effort; projects
should include their plans for publishing and sharing code and potential processes for moving
reference implementations into stable, production-quality codes.

e FEcosystem: For extremeOscale computation to remain successful, it must be supported by a
broad ecosystem. Common APIs promote portability and future standards efforts. Exascale
OS/R research projects should include plans for identifying, designing, and sharing common
APIs where appropriate. APIs could include control interfaces for power, messaging, schedul-
ing, memory, and threads as well as higher-level global OS/R features such as creation of node
collections, dynamic resizing of resources, and tool interfaces. Some high-quality software ar-
tifacts that implement parts of the OS/R stack could be transitioned directly to HPC facilities
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for deployment and support. Research projects should articulate how resulting software fits
within the broader ecosystem.

e Testbeds: To enable researchers to explore the performance and scalability of novel OS/Rs on
future hardware and large-scale systems, DOE will provide access to moderate-scale experi-
mental testbeds that support remote superuser (root) access, building of kernels and software
tools from scratch, and access to attached power-measuring devices. In addition to these
testbeds, exascale OS/R research projects should pursue compelling INCITE or ASCR Lead-
ership Computing Challenge proposals that support extreme-scale testing and performance
measurements.

Exascale Operating System and Runtime Software Report 3



1 Introduction

Since 2008, the Department of Energy (DOE) has convened several workshops to address the signif-
icant challenges facing extreme-scale computing in the coming decade. Three orders of magnitude
performance increase beyond current petascale systems is needed in order to continue pushing the
frontiers of scientific discovery by using modeling and simulation; but fundamental issues that
threaten the feasibility of reaching the level of computational capability. Through a series of work-
shops and subsequent reports, four key exascale challenges were identified: dramatically improving
power efficiency; improving resilience in the presence of increasing faults; achieving efficient data
movement across deepening memory hierarchies and new storage technologies; and managing dra-
matically increased parallelism, especially at the node level. Software solutions that address these
challenges must also improve programmability, expanding the community of computational scien-
tists who can use leadership-class platforms.

While such technology changes have been encountered and overcome in the past, the field of
high-performance computing (HPC) has reached a level of maturity and has become firmly estab-
lished as a critical capability in many science domains. This dependence on computation and the
continued growth of HPC systems, applications, and users add a new dimension to the problem.
Solutions must also consider other important aspects, such as legacy applications, programmabil-
ity, and the desire to continue to grow the community of computational scientists who can use
leadership-class platforms effectively.

As part of the ongoing DOE effort to identify, characterize, and address extreme-scale com-
puting challenges, in early 2012 the Office of Advanced Scientific Computing Research (ASCR)
within DOE and the Advanced Simulation and Computing (ASC) program within the National
Nuclear Security Administration (NNSA) convened a Technical Council (TC) composed of leading
researchers from several DOE national laboratories, with the aim of developing a research agenda
and a plan to address the operating system and runtime (OS/R) software challenges associated
with extreme-scale scientific computing systems. As the intermediary between applications and the
underlying hardware, the OS/R plays a critical role in determining the effectiveness and usability
of a computing system. Because the OS/R can insulate applications from many of the complexi-
ties of the hardware and machine architecture, it is highly desirable to focus initially on this layer
of software in order to better understand the scope of the challenges, promising new approaches,
and potential solutions. For several months, the OS/R TC met with key stakeholders, including
hardware architects, application programmers, parallel tool developers, DOE HPC facility repre-
sentatives, and HPC vendors that sell and support integrated platforms, in order to examine in
depth the future research challenges and current system software gaps. This report details the
organization, activities, findings, and recommendations of the OS/R TC.

1.1 Charter and Goal
The charter of the OS/R Technical Council comprises the following tasks:

e Summarize the challenges of exascale OS/R.

e Assess the impact on exascale OS/R software requirements from facilities and production
support, applications and programming models, and hardware architectures.

e Describe a model for interaction between DOE-funded exascale OS/R research to vendors
building supported products. The model must allow proprietary innovation, encourage APIs
to allow interoperability and portability, and define a minimum set of requirements for func-
tionality:.
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e Identify promising approaches to addressing challenges and requirements by engaging the
HPC research community and by drawing on novel approaches from other related areas such
as embedded computing and cloud computing.

e Articulate dependencies, conflicting requirements, and priorities within the OS/R research
agenda.

e Submit findings to the DOE Office of Science and NNSA in a report.

1.1.1 History and Timeline

The OS/R TC was formed in early February 2012 at the request of Bill Harrod, director of the
ASCR Division of Computational Science Research and Partnerships. The initial meeting was
held on March 21, 2012, in Washington, D.C., where the organization and charter of the TC
was discussed and established. The TC established a plan for monthly meetings in person or via
video teleconferencing and had initial discussions about requirements, potential approaches, and
identification of important stakeholders. A highly desirable goal was to engage the OS/R research
community in a workshop in the October 2012 timeframe that would enable ASCR to develop
a research program and subsequent funding opportunity announcement in the area of operating
systems and runtime systems for extreme-scale scientific computing systems.

1.1.2 Membership
The OS/R TC comprises the following individuals:

Pete Beckman, Argonne National Laboratory

Ron Brightwell, Sandia National Laboratories

Maya Gokhale, Lawrence Livermore National Laboratory
Steven Hofmeyr, Lawrence Berkeley National Laboratory
Sriram Krishnamoorthy, Pacific Northwest National Laboratory
Mike Lang, Los Alamos National Laboratory

Arthur B. “Barney” Maccabe, Oak Ridge National Laboratory
John Shalf, Lawrence Berkeley National Laboratory

Marc Snir, Argonne National Laboratory

Bronis de Supinski, Lawrence Livermore National Laboratory

In addition, the following DOE staff attended one or more of the OS/R TC meetings:

Jim Ang, ASC

Richard Carlson, ASCR
Bill Harrod, ASCR
Thuc Hoang, ASC
Steven Lee, ASCR
Robert Lindsay, ASCR
Lucy Nowell, ASCR
Karen Pao, ASCR
Sonia Sachs, ASCR

1.1.3 Meetings

March 21-22; 2012 — Washington, D.C. — Initial meeting
April 19, 2012 — Portland, OR — DOE/NNSA Exascale Research Conference and Research Planning
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Workshop

May 14-15, 2012 — Washington, D.C

June 11-12, 2012 — Washington, D.C

July 20-21, 2012 — Washington, D.C. — Meeting with vendors
August 21 — Video teleconference

September 12-13 — Video teleconference

October 3—4, 2012 — Research workshop

1.2 Exascale Ecosystem

The proposed research plan presented here must be tightly integrated with existing exascale ef-
forts across DOE. This “exascale ecosystem” includes several key projects that have already been
launched and are making significant progress. This proposed research agenda for exascale OS/R ful-
fills a role for these additional research projects, bringing together the low-level OS/R software with
the needed advanced capabilities to explore architectures, middleware, and performance analysis.

o FastForward is a two-year research initiative for HPC vendors to explore exascale, focusing on
power, performance, and resilience for future CPUs, memory systems, and file systems. The
research agenda described here must be tightly integrated with the new and proposed features
supported by future hardware. OS/R research projects should be organized to track, interact,
and improve the designs of the FastForward projects and the software layers supporting the
hardware.

e (o-design centers have brought together hardware, system software, and computational sci-
entists working together in a specific DOE problem domains to target exascale. Since the
co-design centers [1] [2] [3] have deep connections to the system software and middleware
needed to support their programming model, they are ideal partners for exploring novel
OS/R features and their impact and performance.

o X-Stackprojects (http://science.energy.gov/ascr/research/computer-science/ascr-x-stack-portfolio/)
have been funded by DOE to explore a wide range of computer science topics targeting ex-
ascale, from new programming models to methods for fault containment and explorations of
nonvolatile random-access memory (NVRAM) technologies. The research agenda described
here complements those projects, focusing on the efficient low-level OS/R features that can
best support advanced research proposed by X-Stack projects, as well as new ways to tightly
integrate the OS/R with middleware.

o Synergistic activities have been launched by DOE, much like the X-Stack projects and tightly
focused on exascale:

— CAL: Computer Architecture Laboratory for Design Space Exploration [4]
— Execution Models for Exascale [5]
— Quantifying Overhead in Today’s Execution Models [6]

— Beyond the Standard Model: towards an integrated methodology for performance and
power [7]

— Evolving MPI to Address the Challenges of Exascale Systems [§]
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2 Challenges

The challenges for OS/R at exascale can be grouped into two broad categories: technical and
business/social.

2.1 Technical Challenges

The DOE exascale reports have identified four key challenges: a significant increase in the number
of faults; the need to reduce power requirements; an increased emphasis on memory access and
new technologies; and increased parallelism, especially at the node level. These challenges are
directly relevant to the OS/R layer. Additional challenges are related to hardware heterogeneity,
structural and resource challenges within the OS, legacy issues, new programming models, and
dynamic environments.

2.1.1 Resilience

Efforts to reduce power (e.g., by running at close to threshold voltages) and increase component
counts will lead to significant increases in the number of faults. Furthermore, there will be an
increased potential for “silent errors,” faults in parts of the system that are not protected by
extensive error detection and correction. Specific challenges within resilience include the following:

e Fault Detection: Detecting faults will be more difficult across high component counts and
at multiple levels within heterogeneous systems.

e Fault Notification: It will be difficult to ensure timely propagation of fault notifications
across large networks, where communication bandwidth is limited.

e Fault Management: The operating system will have to provide support for the management
of faults in runtime systems and applications, including the ability to respond to and contain
faults, at unprecedented scales.

e OS/R Survival: Despite the high prevalence of faults and silent errors, the OS will have
to ensure the containment of faults and continuation of OS functions after faults, in order to
avoid fail-stop behavior.

2.1.2 Power

Power management has been identified as potentially the primary challenge for exascale systems.
Arguably, all the challenges that are unique to exascale systems derive from the need to stay within
a tight power budget (20-30 MW). More specific aspects relevant to OS/R include the following:

e Hierarchical Power Management: Hardware power management decisions may be rele-
gated to the OS, which may in turn pass these to the runtime system, which may in turn
pass these to the application.

e Dynamic Resource Changes: Resources could change dynamically to adapt to power
requirements, for example, cores changing speed or powering off nodes. The OS/R must be
able to cope with the varying quality of service that will result from these dynamic changes.

e Global Optimization: The OS will need to provide the basis for a system for global control
of power management. The problem of global management could be exacerbated by the
possibility that local optimal power management decisions may be globally suboptimal.
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2.1.3 Memory Hierarchy

The memory system is a significant consumer of power in modern computing systems. This is
expected to drive future programming models as they focus on reducing the costs associated with
moving data within a node and between nodes. Moreover, new memory technologies will be aimed
at reducing the power costs associated with memory. The operating system will have to provide
support for these new programming models and new technologies. Specific challenges include the
following:

e Integrating NVRAM: The integration of NVRAM directly into the memory hierarchy will
likely require revising aspects of the OS organization.

e Managing Overheads: Memory access overheads will have increasing impact at scale. The
challenge is how to further reduce the current OS overheads.

e Software-Managed Memories: The OS will need to provide more support for runtime and
application management of memory (possibly moving traditional OS services, like updating
translation tables to runtime systems).

2.1.4 Parallelism

In order to achieve 10'® operations per second, applications will need to have billions of calculations
in flight at any point in time. This situation will be a significant challenge for application developers.
It will also create significant challenges in the OS and runtimes. Since performance cannot increase
through additional clock scaling, additional parallelism will need to be supported in the next
generation of systems, both on the node and across nodes. Operating systems and runtimes will

have to meet a number of challenges related to this increasing parallelism:

e Efficient and Scalable Synchronization: Synchronization overheads will need to be min-
imized in order to reduce the costs associated with blocking and to reduce the need for
application-level parallelism to hide latency. A further challenge will be making synchroniza-
tion mechanisms scale while maintaining consistent management of shared resources.

e Scheduling: Scalable scheduling and dispatch of execution contexts will be needed in order
to manage large numbers of computing resources.

e Scalable Resource Management: The OS will need to provide scalable management
(coordination) to support fair access to constrained resources (e.g., memory and network
bandwidth).

¢ Global Consistency, Coordination, and Control: Global consistency, coordination, and
control will need to be managed across an application or system with tens to hundreds of
thousands of nodes, each with thousands of processing elements.

2.1.5 Additional Hardware-Related Challenges

The computational resources of an exascale system will present several challenges for effective
resource management, including:

e Heterogeneity: The hardware resources in an exascale system will almost certainly be
heterogeneous, including multiple types of processing elements, multiple types of memory,
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and so forth. Different types of resources may be capable of providing the same functionality,
but will have different performance characteristics (e.g., high throughput versus low latency),
complicating the assignment of these resources to different parts of the computation.

e Locality and Affinity Management: The node resources will have complicated affinities,
for example, memory and network or processing unit and memory. Effective use of these
resources requires that the OS, runtime, and/or application be aware of these affinities to
attain reasonable performance.

e Hardware Event Handling: Establishing handlers for hardware events will be more critical
in order to support responsiveness to faults, energy management, system and application
monitoring, and so on. OS and runtime systems will need to provide flexible mechanisms for
associating handlers with hardware events and lightweight scheduling mechanisms to ensure
that the desired handlers are executed with the desired priority.

2.1.6 OS/R Structural Challenges

The new operating system for exascale will have to deal with several structural challenges:

e Misalignment of Requirements: Current node operating systems are designed for multi-
processing, which can needlessly interfere when a node is dedicated to a single application.
OS interference needs to be minimized, while at the same time still providing the required
level of support for all applications.

e User-Space Resource Management: Operating systems traditionally have mediated and
controlled access to all resources in the system. However, a variety of new programming
models and runtimes will have significantly different requirements for resource management,
which will likely result in inefficiencies if the OS has to directly manage all resources. In the
future, the application and runtime will need increased control over resources such as cores,
memory, and power and user-space handling of control requests and events.

e Parallel OS Services: Parallel services (e.g., parallel I/O) will be more common: effective
development and support for these interfaces will be critical.

2.1.7 Legacy OS/R Issues

Reusing constructs from existing operating and runtime systems may, at first glance, seem desirable.
While doing so can reduce development time, several challenges must be addressed when considering
the reuse of these constructs:

e Fundamental Changes in Design Assumptions: Many of the design assumptions under-
lying current OS are fundamentally broken for future hardware (e.g., the file centric fork/exec
process creation model of Unix).

e Managing Intranode Parallelism: The node operating and runtime systems for an exas-
cale system will need to be highly parallel, with minimal synchronization. Legacy operating
and runtime systems tend to be monolithic, frequently assuming mutual exclusion for large
portions of the code.

e Enclaves: The node operating and runtime systems for an exascale system will need to
support tight interaction across sets of nodes (enclaves). Legacy operating and runtime
systems have been designed to impose strict barriers between nodes.
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e Right-Sizing OS Functionality: The node operating and runtime systems for an exascale
system will need to be right-sized in order to meet the needs of the application while mini-
mizing overheads. Legacy operating and runtime systems do not emphasize restructuring to
match the needs of an application.

2.1.8 Applications Structure

As machines grow larger, applications are not just adding more grid points but are adding new
modules for improving fidelity with new physics and chemistry. Rather than a monolithic source
code tree, these sophisticated applications are built from multiple libraries, programming models,
and execution models. Future operating and runtime systems must support the composition of
several types of software components, from legacy math libraries written in MPI to new dynamic
task-graph execution engines running simultaneously with a data reduction component.

2.1.9 Dynamic Environments

Current runtime systems are often static, mapping processes and threads to physical resources
exactly once, at program launch. This strategy can make dynamic load balancing and resilience
difficult to achieve. An exascale runtime system, however, must assume a more dynamic program-
ming environment and physical resource pool. Adaptive power management and transient faults
will necessitate a runtime system that can adaptively remap logical program constructs to physical
resources as well as respond to elastic resources.

2.2 Business and Social Challenges

In addition to the technical challenges, we have identified several challenges that arise from apparent
conflicts in business/operating models and broader community issues. While these challenges are
essentially orthogonal to the technical challenges, approaches to the technical challenges that do
not consider the business and social challenges will not be successful.

2.2.1 Preservation of Existing Code Base

Given DOE’s enormous investments in current code bases and the cost of reverifying and requal-
ifying new codes, the new operating systems must provide comprehensive and high-performance
support for codes that were developed under current, legacy OS/R models. The challenge is not only
to support existing application investments but also to establish a clear migration path (on-ramp)
from current OS/R models to the new environments that will be developed for exascale.

2.2.2 Lack of Transparency from Vendors

Vendors are understandably reluctant to share much information about their future plans related to
hardware and software. This reluctance is due partly to the need to protect proprietary information
and partly to the need to change their plans quickly in response to market forces. Lack of details
from the vendors about future hardware plans will make it more difficult to design OS/R systems
that can take full advantage of future vendor developments.

2.2.3 Sustainability and Portability

Organizations funded purely for research cannot be expected to be the sole source of ongoing support
for the results of that research. Successful research results must be connected to a vendor community
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that will provide sustainable support for these results, while enabling continued development of new
directions in OS/R research.

2.2.4 OS Research Not Focused on HPC

Until recently, interest in fundamental OS research had been declining. The broader computer
science research community regarded OS design as complete and therefore focused on innovation in
runtime systems and OS implementation details. Recently, research in operating systems has been
reinvigorated, driven by changes in hardware and the development of novel applications. This new
OS research, however, has not focused on HPC issues, instead being driven by trends such as the
development of lightweight virtualization layers and mobile operating systems (e.g., Apple’s iOS
and Google’s Android). The challenge is to redirect some of this renewed interest in OS research
into areas that are more relevant to HPC.

2.2.5 Scaling Down the Software Stack

The HPC ecosystem is not sufficiently large to support multiple software stacks. Currently, the
highest-performing supercomputers such as those built by Cray and IBM have custom software
stacks. At the other end of the spectrum are simple Linux clusters connected with either GigE or
InfiniBand. An exascale OS/R research effort cannot result in a third, independent software stack.
Instead, new research to improve extreme-scale OS/R components must be integrated into future
software stacks for the most capable HPC systems. Moreover, such components must scale down
to smaller development systems as well as permit software development on desktop-class systems.
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3 Requirements

To determine requirments for future OS/R systems, the TC conducted surveys of application de-
velopers, vendors, facility managers, tools developers, and the research community.

3.1 Applications, Libraries, and Solvers Input

Applications are often indirectly influenced by the core OS through their interaction with runtime
systems and libraries. The technical council surveyed the application scientists to understand the
needs imposed on OS/R by applications, solvers, and libraries. Due to the indirect nature of the
needs, we sought to understand current application user practices and their plans for the future
with respect to runtime systems and the job scheduling environment. We solicited feedback from
developers of applications, numerical libraries, and solvers by distributing the following question-
naire among the application teams in the DOE and NNSA labs. We requested feedback from all
application teams that were interested in exploiting extreme scale systems.

e What runtime system(s) do you currently rely on (MPICH/OpenMPI, pthreads, Charm++,
PGAS, OpenMP, TBB, Cilk, Python, etc.)?

e Are there specific areas where the runtime is deficient?

e How do you expect this to change in the future (i.e., do you expect that the runtimes will
incorporate critical issues like resilience and power management, or will you adopt a wholly
different runtime)?

e Which aspects of the runtime are most important to your application (choose your definition
of “important”): nonblocking collectives, dynamic process creation, active messages, local
persistent memory, etc.?

e How important are issues related to system (job) scheduling (e.g., topology aware mapping,
workflow scheduling, coscheduling of critical resources such as visualization)?

e How important are issues related to intrajob isolation (e.g., protection across workflow com-
ponents or composed applications to support use cases such as in situ analysis)?

e What else do you want to make sure we consider in OS/R research activities?

Application developers are focused on the design of their codes for use on today’s systems while
also preparing for the exascale. Many of the applications are currently being developed using MPI
and OpenMP due to their widespread availability and support. Application teams are increasingly
employing dynamic languages such as Python as flexible scripting tools to steer the application. At
the same time, they are exploring alternative programming models and runtime systems — PGAS,
OpenACC, CUDA, TBB, etc. — to program accelerators, multi-core, and distributed memory sys-
tems. Early exploration of these runtime systems helps application teams evaluate their usefulness
in helping applications meet future programming challenges.

While application teams are concerned about managing resilience and power on the exascale
systems, they expect significant support from the runtime and other layers of the software stack in
easing the challenge. The application developers want the OS/R to support efficient checkpointing
and “better” reporting of errors to the application. Some responders also expressed interested
in exploring new application-specific approaches to resilience. However, most of the teams were
expecting other layers of the software stack to handle many of the aspects of supporting resilience.
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The position of the application teams we surveyed with respect to the power/energy challenge
was unanimous. None of them were exploring application-level solutions or anticipating the use
of specific OS/R support that could aid applications in managing power. There was universal
expectation that power and energy challenges will be handled by other software layers with little,
if any, application involvement.

The application developers hoped that job schedulers would continue to efficiently support
their applications and workflows through job isolation and coupling of application and analysis
components. In particular, topology-aware allocation of resources was often identified as a crucial
aspect at exascale. Several applications currently employing workflows for scientific visualization
were interested in efficient OS/R support for real-time visualization. Sharing of resources between
application and analysis components was also identified as a requirement to support in situ ana-
lytics. The feedback focused on the need for such support without prescribing specific solutions or
approaches that were being explored.

Beyond broad needs, application teams also identified specific requirements and potential limi-
tations. Several teams stressed the need to efficiently support dynamic languages such as Python
that enable flexible scripting. Improved support for finer-grained thread management and locality-
aware memory management was often requested. This included efficient support for thread creation,
thread-to-processor mapping, context switching, and fast synchronization primitives. Interoper-
ability between existing and proposed programming models and runtimes was a common concern.
Examples cited include inter-operability between active messages and MPI, and the co-ordination
of NUMA mapping between the operating system, intra- and inter-node runtimes, and the job
scheduler.

Several teams repeatedly stressed the importance of performance and level of support for ex-
isting and proposed functionality on par with the design of new features. Many of the limitations
identified were those of functionality already supported in extant runtime systems, such as MPI
collectives and one-sided communication. The teams were also exploring new additions such as
transactional memory support but finding the overheads excessive in practice. A related concern
was the increasing complexity of runtime systems necessitating additional layers of abstractions in
application software.

The usability of the features supported and its impact on productivity was identified as a
fundamental requirement. Teams were often interested in the availability of the OS/R on a variety of
platforms such that applications can be developed and tested on smaller scale systems before being
deployed on production platforms. In particular, support for debugging at scale was specifically
identified as a productivity challenge. Several developers pointed out that existing features do
not work as needed, possibly identifying a mismatch between the implementation of functionality
provided by the runtimes and the needs of the application developers.

3.2 Vendor Input

Although much research is needed in OS/R to support exascale-class systems, it is not feasible
for DOE to be the sole maintainer or developer of an exascale OS/R. For progress to be made in
this area we need a collaborative effort from the HPC community; vendors and researchers from
universities and from DOE labs will need to be involved in order to develop a sustainable OS/R
for exascale.

In this section we summarize the views from the vendors who responded to our query for in-
formation. Vendors were chosen from their participation in past government procurements and
research programs, To focus the responses of the vendors, we provided them with guiding questions
(detailed below) and asked for their strategy to provide an exascale OS/R in the projected envi-
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ronment we outlined. Not all vendors contacted provided a representative or responded to all of
the questions. Note that the responses from the vendor OS/R researchers do not reflect any plan
of record for their respective companies.

Questions to drive vendor engagement:

e What models do you feel work best for research collaboration and the transition to products?
e How do you foresee the dynamics for exascale OS/R research and development?
e What relationship do you expect between the exascale OS/R and your product line?

e What licensing issues (BSD, GPL, LGPL), copyright agreements, patents, contributor agree-
ments, etc. do you foresee?

e What are the key technical issues in the OS/R that must be resolved to achieve exascale?
e Can you outline what you expect to be open source and what you expect to be proprietary?

e What will be the key OS/R APIs (at node, partition/job, system levels), including power
mgmt, memory, fault, etc.?

e What tools and programming model influences on the OS/R

e What I/O interfaces (remote filesystems, local NVRAM, etc.) do you feel re needed for
OS/R?

3.2.1 Cray

Collaboration is a standard business practice for Cray. Examples include Red Storm, ACES In-
terconnect, MPICH, MRNet, STAT, OpenMP, OpenACC, OpenSFS, Chapel, Linux, HPCS, and
UHPC. Cray leverages community solutions wherever possible, filling gaps in software or capabil-
ities with Cray solutions. Cray does see some of this software as differentiating and keeps it as
proprietary; the company expects to continuing to do so in the future, protecting IP with patents.
Cray, does, however, comply with all existing open-source licenses such as GPLv2 (Linux kernel)
and expects collaborative projects to be open-sourced with a BSD or Apache-style license. Cray
also publishes detailed APIs to promote adoption in the community. From Cray’s viewpoint, the
issue with the model we proposed is the need for funding support, not only for R&D but also for
maintenance of the open-source stack, since customers expect full support. One such model is the
Lustre parallel filesystem, which is supported and managed by OpenSFS.
The key OS and runtime issues identified by Cray include the following:

Resource management

Power

Memory hierarchy

Processing elements

Parallel work distribution

Resiliency

Programming model interoperability

[ J
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
e Standardization of APIs across programming models and vendors
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Application co-design centers provide one venue for these interactions, but they focus more on
the application interface than on lower levels of OS/R. Other community venues are needed for
coverage and interaction. Standardizing on APIs across vendors and implementations is critical for
adoption. Linux provides some context for this, but not necessarily for HPC and exascale-specific
work.

Application power management will affect all levels of the OS/R and will require fine-grained
control through a combination of hardware and software. Heterogeneity will add to the complexity
of balancing performance and energy usage. Runtimes will require constructs for placement and
control of energy, along with tools for autotuning and prediction of energy consumption. Deep-
memory hierarchies and complex processing elements will be a challenge (e.g., see the Echelon node
design, presented by Bill Dally at SC10, for an idea of the complexity of a node).

Concurrency management and work distribution are mostly a runtime responsibility, because
of to its better understanding of the programmers intent; but these will require operating system
infrastructure. Directed acyclic graphs (DAGs) are one approach for work scheduling with depen-
dency information. DAGs allow for efficient distribution of work and can take into account the
placement of tasks and address processor heterogeneity. Support is also needed to enable monitor-
ing and information collection for analysis and autotuning.

With the latest MPI 3.1 revisions, the MPI fault tolerance infrastructure appears satisfactory;
for instance, resilience to network failures is achieved. Although node failures are not accounted
for, it is hoped that this issue will be addressed in the MPI 3.1 standard and certainly should be
available in the exascale timeframe. Cray has current work in operating services infrastructure.
Job launch and control will be resilient to node failures, but communication for these services also
needs to be resilient to network failures (often using TCP). The runtime system has a significant
role in dealing with both network and node failures.

Issues facing application resiliency include the challenges of shared-memory models with fine-
grained communication. Atomic memory operations are particularly challenging to support effi-
ciently. Many of these issues stem from the lack of language semantics that encompass the idea of
node failures. Research is also planned to address infrastructure to handle node failures within the
context of workload management.

Currently, application resiliency is based on external 1/O-based checkpoint, but these solutions
are not expected to scale. Localized I/O may help but may not be enough, depending on the failure
rates. Other promising solutions include fine-grained and independent rollback and recovery, such as
containment domains proposed by Mattan Erez, University of Texas at Austin. With containment
domains, one preserves data on start, then detects faults before committing; to recover, one restores
the data and re-executes.

Core operating system issues that need to be addressed include support for heterogeneous
processors and resources, noise, I/O bandwidth scaling, and storage hierarchy. Cray’s experience
with core specialization has shown the benefit of isolating certain activities to a subset of cores;
this benefit is seen even at core counts as low as a dozen. The impact to compute resources
will diminish with future high core counts; dedicating a single core to OS processes when core
counts exceed the hundreds and move to thousands will no longer be an issue. Future processors
may also have heterogeneous hardware, and these may be less amenable to traditional OS. Further
work on core specialization could include further segregation of services from computation, possibly
different kernels in a single OS instance, or both. Multi-instance operating systems on the same
node are interesting; but solutions without the overhead of virtualization would be preferred, and
the solution must be supported and maintainable.

Currently, external I/O bandwidths are not scaling with computation: there is I/O interference
on interconnects and storage devices. “Nearby storage is one solution that can help scaling and
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reduce interference from other jobs. However, nearby solutions do not provide global semantics.
Research is needed in proper provisioning of storage and access methods, especially for global
semantics. One complication is the different use cases for I/O: checkpoint/restart files, application
input files, staging data to and from globally shared file system, application scratch space, and
kernel-managed swap space are all possible use cases. Possible solutions include I/O middleware
and I/0 forwarding. Existing projects considering such solutions include DVS, IOFSL, SCR, and
PLFS.

Supervisor and management system issues include site-level power management and scalable
monitoring and control of the system. Site-level power management requires interoperable control
between multiple systems down to the ability to control individual jobs. (This is in addition to the
application-level power optimization that runtimes are developing.) This is a global optimization
problem and will have to take into account variable power pricing, such as day to night, and variable
loads at sites and external limits such as external load on the power grid.

For the RAS system we need good out-of-band monitoring. More work is needed on the mon-
itoring of shared resources. We also need predefined classes for workload manager support that
accounts for CPU, memory, and network interface controls. Coarse-grained capping should be
available based on resource type and class. Power and capping information should be propagated
by ALPS (Cray job launcher), and finer-grained static job-level controls should be available at job
launch time. Moreover, power and energy will have to be supported in job accounting.

Scalable monitoring and control of exascale systems will require tight integration rather than a
collection of ad hoc solutions. Current supervisory systems work but are fragile at large node counts.
Additional research and engineering are required for robust monitoring and control. Detailed
power monitoring and management also will be needed along with fine-grained fault awareness and
reporting. All the data collected will have to be made available to third-party tools through open
formats and APIs. Cray has not seen any solutions coming from the research in predictive failure
analysis. Some progress has been made in the area, but whether it is sufficient remains unclear.

API standardization issues still exist at the boundaries of these systems. Open-source and
industry standards are available for monitoring and control, but more venues are needed for the
exchange of ideas and standardization of common APIs.

3.2.2 IBM (Kyung D Ryu)

IBM has a long history of collaboration and R&D with the government and external researchers. It
also has specific examples of successful collaboration on OS/R topics such as HPC operating systems
with Argonne and the Blue Gene research program. Good areas for architecture-independent
research include operating systems, programming models, and the definitions of APIs for power
and reliability. IBM has a well-defined strategy for working with and contributing to open-source
projects. Following are the current research and technical challenges identified by IBM that are
key to OS/R for exascale systems and fit with IBM’s exascale vision.

OS: IBM has already proved scaling up to 1.5 million cores, 6 million threads on BG/Q in a
production environment using the CNK. Relevant research projects that will help future exascale
systems include FusedOS, which partitions cores between light-weight kernel and full-weight kernel,
and dynamic large-page support for CNK, which allows a node to share memory pages from other
remote nodes.

Challenges in the OS area include supporting next-generation architectural elements such as
heterogeneous cores, specialized cores, service decomposition, and virtualization. In addition, sup-
porting and managing various active elements in memory, network, and storage layers will be critical
research issues.
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Messaging: IBM has converged HPC message-passing interfaces into PAMI—the Parallel Active
Messaging Interface. This mature layer supports active messaging and multiple programming mod-
els and has incorporated recent innovations such as nonblocking collectives; multicontext communi-
cations that allow concurrent network access and endpoint addressing rather than communication
based on processes or tasks; dedicated hardware threads for communication; low overhead inter-
rupts; and work stealing by means of asynchronous communication threads. Challenges in exascale
messaging include supporting a flat address-space model, reliability of message transport, message
ordering, and the interaction of the messaging layer with multithreaded and hybrid programming
models.

Storage: Storage challenges include supporting legacy APIs concurrently with new APIs and the
need for scalable workflows with abundant concurrency. Creating a balanced storage architecture,
including efficient use of storage class memory and other storage innovations, will be an important
focus area for future software and hardware investigations and research.

Programming model: Current research in programming models includes a light-weight OpenMP,
a new thread affinity proposal for OpenMP, and a new performance tool for OpenMP. These have
been submitted to the standards committee for OpenMP. Future programming models must ad-
dress many challenges including system and node heterogeneity and use models for new memory
technologies, while maintaining the large body of codes using existing programming models and
also supporting the broad range of new users and applications.

Power: Power optimizations under investigation include aggressively pursuing the idling of hard-
ware resources; development of a power-aware system and application stack; firmware-based op-
timizations; and ongoing work with BG/Q to improve monitoring, management, and application
power characterization. A key challenge is the lack of common APIs, scaling, and cross-stack
management. Power is at odds with reliability, performance, and determinism. In order to mo-
tivate users to construct energy-efficient programs, power utilization needs to be considered when
scheduling and managing jobs. Another research issue is to determine what level of control vendors
should give users or operators; too much control could lead to accidental equipment damage, and
not enough control could hamper innovation in the runtime.

Reliability: Current research that is applicable to resilience includes transaction-based soft er-
ror recovery, thermal-aware scheduling, fault injection experiments to improve fault tolerance, and
an incremental and asynchronous checkpointing library. The ASCR X-Stack collaboration project
FOX explores alternative OS/R models. IBM also has a collaboration with DOE and PNNL devel-
oping a performance health monitor, which looks at automatic performance monitoring to detect
and mitigate system failures. The challenges in reliability include thread migration, software-based
balancing or wear leveling, and user-based or compiler-based hints for checkpointing. Application
tolerance to faults needs more investigation, as does the propagation of fault information through
the stack. Also, more hardware sensors and diagnostics are needed in order to detect and react to
failure events.

Global management: = What should be left to middleware, and what should be supported
by more standard system software? Should standard APIs or proprietary APIs be supported? A
workflow-based global programming model requires a new execution model and rich system services
from OS/R. Global and application-level power and reliability management also requires common
APIs. Global OS management allocation and scheduling require support for elasticity, which will
require adaptation to varying resources in the runtime and application. Addressing all of these
issues in an integrated design is difficult, but such a design is the most promising solution to meet
the goals of exascale.
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3.2.3 Intel (Rob Knauerhase)

Intel has strong ties to academia, the overall HPC community, and the national labs. Many products
from Intel have beginnings as research demonstrations from Intel labs and then are moved through
different groups at Intel until they mature enough for integration into products. Key problems
identified include fault tolerance, large overhead required to recover from events (in a checkpoint-
restart model), new memory organizations, parallelism, and concurrency. One idea is to make a
system that can be independently optimized by a domain export, a tuning expert, and an execution
expert, so that no one person has to know the whole system. An exascale OS/R will have to adapt
and be self-aware, features that will involve the collection and processing of much more information
collected through hardware sensors and software sensors. To retain the information compilers collect
from the code and to transfer this knowledge to the runtime, we need something better than current
ELF binaries. We also need to propagate optimization hints up and down the stack.

Cross-stack cooperation is needed in order to support new memory hierarchies. The ability to
dynamically reposition code and data for energy, performance, or faults is a key requirement of an
integrated OS/R.

The key exascale philosophy with Intel’s Runnemede and UHPC projects has been the develop-
ment of support for a fine-grained, event-driven execution model, with sophisticated observation.
One method to address the resilience issue is the concept of execution frontiers, which schedule
codelets in a dataflow fashion but keep enough state to roll back the execution when a failure
occurs. This method is currently in the research stage but has been developed for the Intel UHPC
work supported by DOD. Execution frontiers also allow for algorithm substitution, which could
address the heterogeneity of resources, or allow the selection of algorithms with different precisions
in order to optimize for power or performance.

Another collaborative effort from Intel is the Open Community Runtime. This is a shared
framework for resource control with an exascale focus that allows modular components. Here Intel
seeks to integrate existing work such as Rice University’s Habanero-C and Sandia’s Q-threads along
with Intel’s research from UHPC and Runnemede. This work is funded though industry, academia,
and government and will eventually result in a crossbar of runtime systems to hardware available
through common APIs and OS support.

3.2.4 Nvidia (Donald Becker)

Nvidia is focused on hybrid computing and power efficiency, key elements for the success of exascale.
Nvidia has internal OS teams with broad expertise, and it has broad HPC application experience as
a result of the focus of the Tesla business unit. The company also has experience with open-source
collaborations and is a top 10 contributor to the Linux kernel.

Nvidia sees an evolving role for the OS in HPC systems, where the OS/R is more involved in
the broader system constraints of compute efficiency, power steering and node and rack thermal
management. The company believes that OS/R should be less involved in the controlling the
hardware and more involved in setting policy that the hardware will adhere to. Nvidia envisions
OS bypass as the norm, where activities such as thread and task creation are handled by hardware.
Nvidia also believes that the OS will have an expanded role in managing memory as a result of
different types of memory becoming available.

Nvidia has a lead in power-efficient computing from hybrid HPC systems with GPUs, down to
the mobile Tegra and ARM processors in phones and tablets. HPC systems are limited by power and
thermal constraints, however, and the systems need the ability to manage through a combination
of firmware, node OS, and systemwide software. The current state of the art is the Intelligent
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Platform Management Interface (IPMI), but this has limitations (e.g., it does not monitor network
status). Much can be leveraged from the advancements of NVidia’s work in mobile devices. These
devices have stringent power requirements and can attribute power use down to processes and
applications, something that HPC runtime and systems software could make use of. HPC needs
better definitions for the interfaces and structure for power-related control. Device trees in Linux
are a path forward, but OS-independent and other OS-dependent APIs are also needed—such as
the reporting and configuration of IPMI, application interfaces to request performance levels, and
accounting tools that relate power use back to applications.

Fault isolation is another area with much room for improvement—containing faults to the local
applications and attribution of faults. Also needed is propagation of faulty information from the
hardware to the OS and runtime. These techniques could then be extended beyond the node level.
Fault recovery methods that do not impact other applications on the node, such as a soft reboot
of a GPU, is an example of this type of fault containment.

Memory management will have to broaden to new memory hierarchies. We will need manage-
ment of peer memory types, such as grouping DDR, GDR, and LPDDR resources. The nonuniform
performance of this new hierarchy should be taken into account, especially for PGAS programming
models. In order to support this, multiple memory management units will be required in hardware,
and the OS will have to use these efficiently.

NVidia has an in-house testbed devoted to addressing the issues identified. Currently, power-
efficient control is under development, and performance trade-offs for HPC applications are being
investigated.

3.2.5 Vendor — common themes

Common themes from vendors include the opinion that an external organization is needed to hold
common specifications and open-source projects and code. A third-party foundation is viewed as
a requirement for any multivendor collaborative effort, its main purpose being to mitigate liability
for the vendors. Most vendors prefer a BSD-type license if working with open-source software;
other acceptable licenses mentioned were IOSL, Eclipse, Apache, CPL, and MIT. Since vendors
do not want to give up the option of having patents, we need well-defined content areas. Vendors
also agree that if there is a open stack for exascale, a model and funding are essential in order to
maintain that stack.
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3.3 Facility Input

People who manage facilities identified requirements for OS research advances in several key areas,
as detailed below.

3.3.1 System Analysis

The main OS challenge for system analysis in the move to exascale is implementing support for
gathering comprehensive data efficiently at scale. An urgent need exists for global integration of
disparate monitoring and control systems, with sufficient granularity to provide per-user, per job
data that includes energy usage, errors/faults and memory usage. Some of this information will
have to be available to users as well as administrators, for example, to verify memory usage. A
further challenge is the requirement for real-time monitoring (e.g., faults, RAS, memory usage), in
addition to out-of-band performance monitoring.

The kind of data that should be collected by this out-of-band performance monitoring includes
the following;

e Per user, per job data including energy and errors

e Live real-time fault and RAS data that is easy to stream and filter

e Out-of-band performance data on power and energy, memory usage, soft errors, and so forth
e Scalable memory usage monitoring

e Verification of memory usage

e Multiple levels of monitoring, both real time and post hoc

e Better global monitoring of disparate control systems, including integration with building
control systems.

In addition, to understand and mine the accumulated data, administrators of these systems
require the following features:

e Anonymization of log data
e Mining of log data for information

e Common formats

3.3.2 Fault Management and Maintenance

From the perspective of facilities, several aspects of fault management need to be addressed by the
OS for exascale. Systems must be able to cope with failures (e.g., through process migration or
other solutions), so that jobs can continue to run with minimal interruption. Support for testing
also is needed, specifically the ability to run recurring memory, processor, and network tests on a
subset of nodes without impacting jobs running on other nodes. Related to this aspect, the OS
must support rolling updates, partial updates, and rollback of updates. Additionally, the OS needs
to integrate support for sensor readings on power quality so that nodes and networks can be shut
down quickly if required.
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3.3.3 Systemwide Energy Management

In order to cope with the issues of energy management at exascale, the OS needs to support full
integration of a facility’s energy infrastructure. This includes both monitoring at the site level,
encompassing multiple security domains and disjoint networks, and control interfaces for power
capping and control at multiple levels (e.g., node, rack, set of racks). An added challenge is
determining how best to schedule jobs based on energy management requirements, for example,
off-peak versus peak power demands.

3.3.4 Performance

Job placement for massively parallel codes at exascale will be a major challenge and will likely
require introspection and dynamic adaptation to optimize system usage. This will require advances
in many aspects of the OS, including robust topology awareness, performance predictability, QoS,
and accurate monitoring. Performance predictability and QoS are also important for application
programmers so that they can more effectively optimize codes, for example through autotuning.
The aspects of performance critical to the exascale operating system are minimization of launch
time for huge jobs and fast booting for subsets of nodes.

3.3.5 Customization

For an exascale operating system to support a diversity of jobs, programming models and usage
patterns on a huge scale will require the ability to customize parts of the system for particular
jobs. The challenge is to provide support for user specialization, such as different software stacks,
custom schedulers and runtimes. These different customizations must be available simultaneously
to different jobs, as needed. The operating system will have to provide extensive user-level support
(a full set of system calls and library support) if required by the application; but it also must be
customizable so that other jobs can be run with minimal OS interference, as close to the bare
hardware as possible.

3.4 Input from the Large-Scale Tools Community

We surveyed a wide range of experts in the community that designs and builds performance analysis
and correctness tools, as well as the infrastructure on which they are based. Our questions to these
experts, which provided the opportunity to capture their requirements for exascale OS/R, were as
follows:

e Are there specific areas where the runtime is deficient?

e How do you expect this to change in the future (i.e., do you expect that the runtimes will in-
corporate critical issues like resilience and power management or do you expect other software
layers to be required to handle them)?

e How important are issues related to system (job) scheduling (e.g., topology aware mapping,
workflow scheduling, coscheduling of critical resources like visualization)?

e How important are issues related to intrajob isolation, for example, protection across workflow
components or composed applications to support features like in situ analysis?

e What do you think distinguishes tool OS/R requirements from those of applications?
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e What is the impact of major exascale challenges (power, resilience, scale, dynamic resource
management, heterogeneity, asynchrony) on your needs from the OS and/or runtime?

e Our definition of OS/R is broad (e.g., it includes resource managers) and requires underlying
infrastructure similar to that needed by many tools (e.g., scalable multicast and reduction
capabilities). What do you consider to be the technical overlaps and interactions between
tools and OS/R?

e What do you consider to be the best R&D model for managing interactions between these
technical areas? How do you think technical overlaps should be handled? How can we best
avoid duplication of effort and achieve reuse across these technical areas?

e Tools often require efficient access to hardware resources that are usually restricted to privi-
leged users by default. What resources do you need to access? What are your requirements
in terms of cost for that access? How frequently do you access them? How would you propose
to restrict access to those resources?

e Performance and correctness of an application depend on the behavior of many hardware
and software subsystems (e.g., load balancing, power management, libraries, OS, file system).
How do you want to handle the attribution to a specific component or instance and at what
granularity (e.g., frequency, resolution, LOC, or function)?

e What else do you want to make sure we consider in OS/R research activities?

These questions provided the opportunity to gain input not only on technical requirements but
also on the overlap between tools and OS/R. Further, we also sought input on how to manage
interactions between the communities that work on these topics.

Responses from tool implementers confirmed many of our preconceptions of tool requirements
on exascale OS/R but also revealed important additional concerns. At a high level, tool OS/R
requirements overlap those of applications; however, they also extend those of applications.

3.4.1 Overlap with Applications

One area in which tool OS/R requirements overlap those of applications is the need for efficient
bulk launch for scalability. The mapping of tool threads of control to the overall system and affinity
between them, and those of the application, is important both for tools and for applications. Fur-
thermore, tools need OS/R support to handle heterogeneity and scale. Like applications, support
for in situ analysis is critical for tools. Indeed, many have already implemented in situ techniques
and thus may serve as precursors for general requirements in this area. Tools also require syn-
chronization for monitoring across enclaves and low-overhead ways to cross protection domains.
The latter requirement is perhaps more general than for applications, which often need to cross
protection domains only for communication between threads of control.

Applications need well-defined APIs for information about key exascale challenges. Tools will
frequently provide measurements relevant to these challenges. Occasionally, they will even imple-
ment the solutions in generic modules on which applications will build. Overall, tools require these
well-defined APIs at least as much as applications. Specific areas identified for creation of portable
APIs include power and resilience. Tools also need APIs to handle asynchronous execution; these
APIs may be distinct from those used by applications—or at least will extend them, since tools
must measure the efficacy of asynchronous approaches as well as use them.
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Another potential overlap in the requirements of tools and applications involves quality of service
concerns for shared resources. Tools need QoS guarantees to ensure that they do not too severely
impact application execution. A particular area of concern is that tools can have extensive 1/0O
requirements.

3.4.2 Additional Requirements

Despite the cited overlaps, tool requirements are broader than those of applications. Generally,
the boundaries between applications and the OS and runtime are fairly clear, whereas tools often
directly implement features that might alternatively be incorporated into the OS or runtime. Such
incorporation would serve the same purpose as reusable tool components in reducing the effort to
implement end-user tools. Further, it could, in many cases, provide lower overhead implementation
of the functionality.

A specific area in which tool OS/R requirements extend those of applications is the need to
launch with access to application threads of control. Often tools must directly launch those threads
of control. However, tools also must be able to locate the application threads of control and attach
to them after they are launched through the typical production (non-tool) mechanism.

Generally, tools need low-overhead timers, counters, and notifications. Most systems currently
provide such timers, and low-overhead access to performance monitor hardware is also common.
However, notifications (e.g., interrupts) often have too high an overhead, and the need to minimize
the overhead of notifications appears likely to grow in exascale systems.

Related to low-overhead timers and counters, some researchers suggested that generic measure-
ment conversions might best be provided within the operating or runtime system. This functionality
is typically provided for timers, which often provide a raw cycle count that OS/R routines can con-
vert to a more standard time measurement. However, even this currently available functionality
will become more complex with the likely prevalence of processors that can change frequencies
without any software intervention.

Tools require access to a wider range of resources than those that applications access. Such
resources include counters related to shared resources, such as network hardware. A particular
concern is that tools require attribution mechanisms for these resources. They must be able to
associate use of shared resources to specific applications, ideally to the specific threads of control
and to lines of code and data structures being accessed. With respect to code lines, low-overhead
mechanisms to determine call stacks are of critical importance; the tools community has already
designed techniques that provide this functionality, although, like measurement conversions, they
might be more efficient (and easier to use) if integrated into the OS/R. When considering attribu-
tions for shared resources, such as network hardware, solutions probably need to include hardware
support. The OS/R must facilitate access to this special-purpose hardware, rather than preventing
it, as often occurs. Overall, tool implementers expect that OS/R mechanisms for aggregation and
differentiation could greatly assist their efforts.

One unique requirement for tools compared with the requirements of applications comes in
the form of multicast/reduction networks. Tools share this requirement with many aspects of the
OS/R. Often, the enclave OS must combine data from multiple compute nodes in the enclave or
must distribute information to them. For example, I/O forwarding services often provide combining
functionality. Similarly, bulk launch facilities provided by the global OS must contact a number
of compute nodes. While resource managers (RMs) already use tree-based networks for this task,
the networks are often contained within the RM implementation. Further, tools have used the
combining functionality much longer than OS/R implementations. In general, tool accesses often
stress different performance aspects from those of the OS/R. While implementing a generic multi-
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Table 1: Position papers received and accepted for presentation at the workshop
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cast /reduction capability may seem primarily an engineering exercise, significant research is needed
to design techniques that balance the competing performance requirements that are partially cap-
tured in the concepts of latency sensitivity versus bandwidth sensitivity but also involve issues with
asynchrony and other exascale challenges such as resilience.

3.4.3 Summary

Tool requirements create many important OS/R research topics. Perhaps the most significant is
how to maintain the existing level of service and access for tools as system sizes increase and ap-
plications increasingly adopt asynchronous execution paradigms. Other critical questions involve
low-overhead notifications and attribution of activities involving shared resources. Moreover, mul-
ticast/reduction networks that can be shared efficiently between OS/R activities and tools—and
balance competing performance requirements—are important areas of research.

3.5 Research Community Input

Input from the research community was solicited in the form of position papers. The call for
position papers was circulated widely, including HPCwire. We received 80 responses to the call.
Sixteen of the submissions were ruled out of scope because the position paper did not describe
strategies to address core topics in operating or runtime systems for extreme-scale systems. The
remaining 64 papers were partitioned into categories and reviewed by members of the technical
council. Twenty-five of these were selected for presentation in a workshop (see Table 1). Priority
was given to papers that emphasized novel, high-risk/high-reward approaches.

The OS/R Software Technical Council Workshop was held at the American Geophysical Union
in Washington, D.C. on October 4-5. The agenda for the workshop was organized around topic
areas, using a format that designed to promote interaction among workshop participants. Each
session covered two of the topic areas and concluded with a panel discussion. The topic areas
included the presentation of three or four position papers. Each presentation was limited to 10
minutes; and the topic area concluded with 15 minutes for questions, answers, and general comments
from the audience. In the panels, invited presenters addressed a set of specific questions prepared
by the technical council (see Table 2).

In the final panel of the workshop, speakers presented their impressions of the workshop and
offered recommendations for future directions.
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Table 2: Topic areas and panel areas of presentations

’ Topic 1 Topic 2 Panel
OS Structure Core Specialization Global and Node OS Architectures
Memory Structures Fine grained execution Support for Novel Programming Models
Power /Energy Resilience Power and Resilience
Adaptation Adaptation Adaptation
SYSTEM VIEW
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Information
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* Monitoring and control System-Global 0S |
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* Bring-up | Hardware Abstraction Layer |
* Monitoring
* Diagnosis Hardware & Firmware |

Figure 1: Software stack, machine level

The workshop was lively and highly interactive. The participants collectively shared a deep
and wide expertise in OS and runtime for both HPC and enterprise. The size and organization
of the workshop enabled all to share their thoughts and debate research issues. The discussion
and interactions during the panel were captured by scribes assigned to each panel. The technical
council also received written feedback from panelists and workshop participants. The position
papers, presentations, notes from the panels and Q&A sessions, and postworkshop feedback were
invaluable to the technical council in putting together the report and recommendations.

4 Reference Architecture

We describe in this section a reference architecture for exascale OS and runtime. The basic functions
are similar to functions of various components of the current software stack, with some extensions;
however, the organization of these components may be different, in order to address scalability and
resilience issues at exascale. We see this reference architecture as a starting point of a community
effort to further refine and validate this design.
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This generic structure is illustrated in Figure 1. The bottom layer includes the system’s hard-
ware (compute nodes, storage nodes, network, service processors, etc.). The hardware/software
interface is defined by a Hardware Abstraction Layer (HAL) The System-Global OS/R (SGOS)
layer includes all the system functions that are local to one system but can affect the entire system:;
in particular, they can affect multiple concurrent jobs. Physically, the SGOS encompasses OS/R
code that runs on compute nodes, I/O nodes, service processors, consoles, and so forth.

An enclave (i.e., partition) is a set of resources dedicated to one application or one service. To
the greatest possible extent, system functionality is encapsulated within enclaves. In particular,
the failure of an enclave should not cause global system failure, and different enclaves can provide
different implementations of the same function. As a concrete example, we propose that a parallel
loader be an enclave function that involves only nodes within the enclave. The interaction with
a system global function (the resource manager) will be through standard interfaces: the resource
manager passes the load file to the enclave loader, and the enclave loader returns a success indicator.
An interactive partition may use another loader.

The major subsystems of the SGOS are described below.

4.1 Hardware Monitoring and Control

The hardware monitoring and control subsystem (HMC) monitors the health of the system’s hard-
ware and manages the hardware configuration. In current systems, the monitoring subsystem feeds
information into operator consoles and event logs. As resilience becomes a key issue, this infras-
tructure will need to feed into a real-time autonomic control system that automatically initiates
reconfiguration actions. Some of these actions (running diagnostics, isolating faulty components,
reconfiguring nodes to use spare components) will be internal to the HMC subsystem. Others,
such as restoring a file system or recovering a running application, are performed by higher-level
subsystems. Therefore, the HMC subsystem will have multiple, dynamically bound clients that can
communicate both ways: be informed of failures of hardware components that may affect them,
and inform the HMC subsystem of higher-level failures that may be indicative of HW failures. The
HMC system will provide standard interfaces for getting information on the hardware configuration
and on events that change this configuration (e.g., HW failures).

The HMC subsystem can be further subdivided into components that monitor and control
various hardware components: compute nodes, network, racks, and so on.

4.2 System Monitoring and Control

The system monitoring and control (SMC) module monitors and controls the low-level initial soft-
ware configuration of the system components. In particular, the SMC is responsible for the boot-
strap procedure that installs an initial kernel on each node and creates an initial communication
infrastructure that connects all systems components. This subsystem may be integrated with the
HMC subsystem. Like the HMC subsystem, it will provide interfaces to get information in the
low-level software configuration of the system and events changing it. The SMC may leverage
existing standards (e.g., bootp), but those will need to be adapted in order to improve scalability
and reduce cold-start time of large systems.

4.3 Resource Manager

The resource manager (RM) allocates resources to enclaves and controls the external interfaces of
the enclave (connections and permissions). We say that a resource is managed if the system can
provide some QoS guarantee to different sharers of this resource. Currently, nodes are a managed
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resource, and the allocation is static (for batch jobs). In the exascale timeframe, power will become
a managed resource. It is also possible (and desirable) for other resources to become managed:
internal storage volume, storage bandwidth, network bandwidth, external bandwidth, and the like.
Consider, in particular, network bandwidth. Currently, the system network is shared, and the
performance of one application can be affected by the traffic of another application, resulting in
significant fluctuations in performance. One could avoid this problem by overprovisioning network
bandwidth, ensuring that congestion is extremely rare. But such a solution is expensive. Alter-
natively, one can avoid sharing by allocating disjoint network partitions to each enclave. When
high-radix networks are used, however, this will lead to a significant loss of overall bandwidth, since
a large fraction of the links are not utilized. Instead, one may want to time-share links, but use
virtual channels to guarantee a fixed fraction of the channel bandwidth to each application. In such
a situation, network bandwidth becomes an allocatable resource.

We also expect that resources will be allocated more dynamically, because of the dynamics
of the underlying platform (due to power management and frequent failures) and the shift from
monolithic applications to heterogeneous workflows. Thus, an enclave may acquire new nodes, lose
nodes because of failures, or return nodes to the global pool; the power available to it may be
increased or decreased.

The resource manager aslo sets permissions and sets communication channels that connect an
enclave to another or to external interfaces. For example, the RM will connect a newly created
enclave to the service enclave that provides it with I/O services, specifying levels of service, per-
missions, allocations, and so on.

Multiple enclaves can be connected in order to support workflows. Workflows can be also
supported within an enclave; components within an enclave are tightly coupled, while communicat-
ing enclaves are loosely coupled. This configuration is analogous to the difference between coupled
threads within one OS process vs. processes communicating via sockets. Efficient workflow support
across enclaves will require the definition of new parallel communication and control mechanisms;
see, for example, [9].

The SGOS interacts with the underlying hardware, with the active enclaves, and with external
clients and services. The interaction with the underlying hardware includes a discovery process,
where the SGOS discovers the hardware configuration, and the monitoring and control interaction.
Much of the discovery process is done today by reading configuration files. This should be comple-
mented by protocols that query the actual hardware, in order to avoid inconsistencies. Also, to the
extent possible, the interaction with hardware should be mediated by the Hardware Abstraction
Layer, in order to insulate the SGOS from minute hardware details.

The external interfaces of the SGOS enable external monitoring, control, and resource allocation.
Information about the system health is fed to an operator console and to an event database; the
operator can control system configuration; the total power consumption of the system can be
adjusted, depending on external factors (electricity price, external temperature); and resources
can be put under the control of an external resource manager, for example, an external workflow
engine. In effect, we have an hierarchy of “operating systems”: grid operating system, machine
room operating system, machine operating system, enclave operating system and node operating
system. The view we embrace is that the SGOS is in full control of a machine; it can delegate
capabilities to the higher levels of management (machine room, grid) or to the lower levels (enclave,
node). These various “operating systems” are embodied by software running at different locations;
the SGOS keeps tracks of the location(s) of components that it interacts with.
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Figure 2: Structure of enclave software.

4.4 Enclave

Figure 2 illustrates the putative structure of an application enclave. The Enclave OS (EOS)
and Enclave Common R/T Services handle functions that are enclave-global. These functions
include the initialization and management of the communication infrastructure within the enclave;
work migration and load balancing; and recovery from failures that the enclave can handle on its
own. The current division between “kernel” and “runtime” may change; as a rule, services will be
provided in kernel mode only when this is necessitated by the hardware or when it is necessary
in order to ensure partition isolation. Therefore, we do not describe the division of labor between
these two layers but instead consider them as a whole, using the acronym EOS/R to cover both.

We distinguish between common services that are used by all programming models, libraries,
and languages and component-specific services that are provided in the run-time of a specific library
or language. The assumption is that different programming models, libraries and languages use
a common set of services and map their specific services atop these common services. This will
reduce development costs for each environment. More important, the common services provide
interoperability across the different environment and avoid conflicting resource requirements.

The EOS/R is implemented by kernel code and libraries running on each node. Some of the
services are node-local, such as the management of local resources (core scheduling, memory and
power allocation), and the handling of coordination across threads. Others require coordination
across multiple nodes, such as user-space communication, including rDMA, collectives and ac-
tive messages. New technology will be needed to better integrate internal communication and
synchronization mechanisms with external ones (e.g., transactional execution of active messages,
message-driven task scheduling).
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Figure 3: Structure of node software.

The enclave interfaces with the SGOS, with other enclaves, and with external agents and ser-
vices. The SGOS sets up the required interfaces when the enclave is instantiated, connecting the
newly created enclave to other enclaves and negotiating the dynamic interface between enclave and
SGOS. The SGOS may require the enclave to periodically report on its health and performance.
The enclave may request to be informed of various hardware events that are captured by the hard-
ware monitoring subsystem. The enclave also may declare its ability to handle various failures, for
example, the failure of a node; or it may require that such failures be handled by the SGOS (e.g.,
by invoking a restart callback function on a newly established enclave). The interface may include
a dialogue for dynamic resource management, allowing the SGOS changing the resource allocation,
for example, by reducing power or giving the enclave additional nodes.

Similar dialogues involve the EOS/R and the libraries, tools, and application-specific services.
For example, an enclave may register with the SGOS its ability to handle node failures. Handling
such failures will involve the EOS/R for recreating the execution environment (e.g., re-establishing
communications), possibly replacing the failed node with a spare node; at this point, the EOS/R
would invoke callback functions of the various components, libraries, tools and applications, en-
abling each to repair its state.
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4.5 Node View

Figure 3 illustrates the various software layers from the viewpoint of an individual node. The node
is controlled by kernel and common services software installed at each node. Some of the software
is installed when the node boots, and some is installed when the enclave is configured. Some of the
kernel software is the local “representative” (or proxy) of the SGOS. For example, the node may
run a process that provides a periodic heartbeat to the SGOS, sends to it periodically performance
information, gets informed about global events (e.g., hardware failures), or passes to the SGOS
information about enclave events (e.g., normal or abnormal termination). This proxy need not be
present at each node: An enclave may have one dedicated “master node” that interfaces with the
SGOS; or, for redundancy, it could have two masters, one active and the other passive, with a
takeover protocol managed by the global information bus (described below).

Similarly, the node will run software that is the local instance of the EOS/R, handling services
that require interaction of multiple enclave nodes: communication and synchronization, reconfigu-
ration after hardware failures (at the local node or at other nodes), load balancing, and so forth.
Moreover, the node has a local OS/R component that manages node local resources. Above these
layers, language- or library-specific runtimes implement various programming models that can be
enclave-global or node-local.

We expect significant hardware heterogeneity, with different hardware dedicated to event-driven
(i.e., reactive) computations and to long-running (i.e., transformational) computations. This spe-
cialization can occur at the node level (with different cores used for different functions), at the
enclave level (with different nodes dedicated to different functions) and at the system level.Node-
level specialization can be exploited by mapping kernel and runtime functions on cores that supports
fast even handling and mapping computations on cores that have efficient pipelines for long-running
computations.

4.6 Global Information Bus

The proposed architecture requires the services of a resilient, scalable, and efficient publish and
subscribe (pub/sub) infrastructure, in order to carry information about events and commands
across the various components: Information about the health of hardware components has to be
carried to the enclaves that use this components, assuming they have registered for this information;
information about the health of enclaves may be relevant to storage server, as well as to the SGOS
and so on. A similar pub/sub infrastructure may be needed within each enclave, for example,
to handle dynamic resource management (load balancing), power management, and failures. A
similar infrastructure is needed for interfacing with performance tools and controlling applications
interactively (for debugging or steering), although this case is simpler since it requires only a one-
to-many communication infrastructure (a tree), rather than a many-to-many.

4.7 Global Object Store

A fast, transactional database or object store is another generic service that could greatly facilitate
the design of scalable and resilient systems. Recovery is slowed when the state to be recovered is
mutable, is distributed across many sites, and must be consistent across sites. Therefore, to the
greatest possible extent, components should be stateless (i.e., have immutable state) or should have
centralized state. However, centralizing the location of mutable state may hamper scalability. We
need logically centralized but physically distributed state—something that can be provided by a
fast object store, possibly implemented by using nonvolatile memory.
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5 Interfaces

The proposed architecture requires multiple interfaces across components and functions. Some of
them are well established (e.g., bootstrap protocols for installing the initial kernel on each node).
Others exist in a limited form on current HPC platforms (e.g., various global kernel services). And
some will require new invention.

We describe these interfaces in generic terms, without specifying implementation mechanisms.
Some of the interfaces could be implemented by using objects stored in a shared object store (e.g.,
shared XML files or shared databases). Others could be implemented by using message exchanges
(e.g., passed by the global information bus). Still others could have functional implementations,
using calls or callback functions. The choice of implementation will depend on the volume of inter-
action, the communication mechanisms (push vs. pull, point-to-point vs. multicast), requirements
for performance and reliability, and so forth.

5.1 Hardware Abstraction Layer to Global (and Local) OS

The HAL interface exposes the capabilities of the underlying hardware to the SGOS, EOS/R, and
node OS. This includes node-level interfaces that support functions such as the following:

e Query hardware node configuration

Bootstrap an initial communication channel and an initial kernel on a node

Set up user space communication channels

Query dynamic information (temperature, power, performance metrics, faults and other
events)

Control HW configuration (in particular, power)

Some of these interfaces are already defined by industry standards. Others, such as the interface
to control performance counters, are partially defined by libraries such as PAPI [10]. For yet other
interfaces (such as drivers setting user space communication channels), no standards exist.

At the SGOS level, the HAL interface exposes information on the health of other hardware
components (racks, cooling system, fans, etc.) and enables control of the hardware configuration
(power, connectivity) One will need to integrate the HAL interfaces in the general publish and
subscribe infrastructure, so as to allow for multiple customers of the data, while avoiding duplication
of the sensing and control functions.

5.2 System Global OS External Interfaces

Global OS external interfaces include interfaces and tools to control the system and to effect
interactions with external subsystems, in particular the following:

e Interfaces for SGOS booting. As systems become more complex and more heterogeneous
(e.g., supporting multiple kernel configurations within the same system), the tools and inter-
faces for system boot must become more open and standard, enabling various subsystems to
plug in their own startup procedures and validity checks at appropriate points in the boot
sequence
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e Interfaces to monitor and control the hardware configuration from an external
control point (human or automated operator). Before the information is sent out, it will
be filtered and processed by the SGOS HMC subsystem; the interfaces enable the SGOS to
control which information is captured and how it is processed before being sent out. By
“hardware configuration” we mean static configuration (the machine description), dynamic
configurations (nodes that are up or down, power levels, etc.), and events (alarms).

e Interfaces to monitor and control the software configuration from an external
control point. Again, the interface enables one to query current configuration, receive in-
formation about alarms, set up various software sensors (e.g., heartbeats or periodic statistics
dumps), and so on. The interface should allow the plug-in of monitoring and control interfaces
for new subsystems; and it should support multiple clients for monitoring and control, with
a clear hierarchy: for example, a fast, automatic response by suitable scripts and a slower
response by an operator.

¢ Event databases. We expect that event logs will be replaced by searchable event databases,
with standard schemas.

e Interfaces for remote schedulers. Also needed are interfaces for batch schedulers and
workflow control engines. The interfaces should allow different system resources to be dynam-
ically allocated to different external schedulers. As described before, schedulable resources
may include not only compute nodes but also I/O nodes or fractions of shared services, as
well as power. The allocation can be dynamic, changing over time.

5.3 SGOS to Enclave

The global operating system allocates resources to enclaves, controls their configuration, connects
different enclaves in order to support workflows or provide services, and negotiates the communi-
cation and control protocols at execution. Today, these protocols are largely fixed. Future systems
will need more flexibility. For example, an enclave may or may not want to be informed of failures
of hardware components allocated to the enclave. In the former case, the SGOS will pass the
information to the enclave manager(s); in the latter case, the alternatives may be to terminate the
enclave or to re-establish an enclave with the same hardware and system configuration and invoke a
recovery callback function at the new enclave manager. Similarly, an enclave may or may not want
to be able to request or be requested for changes in configuration (more or fewer nodes, more or
less power). The enclave may be required to provide a heartbeat or periodic information indicating
that the application is making suitable progress (e.g., a heartbeat generated by the application at
each iteration). Again, the external interface (heartbeat) should be separated from the internal
implementation (the mechanisms generating the heartbeat within the enclave). Further, the en-
clave OS should have full information on the underlying hardware configuration, including network
topology.

5.4 Enclave OS to Enclave RT

To the same extent that different enclaves will have different capabilities for managing power or
handling failures, different runtimes, libraries, and applications will differ in their capabilities. Here,
again, the EOS has to negotiate with the higher software layers what information they produce
and consume and what events they can handle. Consider, for example, a node failure. Such a
failure can be handled by the global OS by allocating a new partition, initializing the enclave OS
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and invoking a recovery callback function at the enclave manager. Alternatively, the enclave may
use spare nodes, together with global checkpoint/restart. In this case, the EOS is informed of the
node failure; it recreates the communication infrastructure with the spare node replacing the failed
node and invokes a recovery callback function to restore application state. The runtime, libraries
and applications may be able to recreate the state of a failed node locally, without requiring a
global restart. In this case, the enclave OS may invoke the recovery callback function(s) only at
the newly allocated node and other nodes that need to participate in the recovery. If the runtime,
libraries, and application is able to continue executing with one node less, the enclave OS need not
recreate the original communication infrastructure but simply update the running nodes with the
information on the missing node.

Note that the capabilities that an EOS will register with the SGOS may depend on the capabili-
ties of the runtime, libraries, and applications: The EOS will register its ability to overcome a node
failure only if the application or runtime can do so. Therefore, one will need to properly order the
different information exchanges, probably using a top-down pass, followed by a bottom-up pass.

5.5 General Communication and Coordination Services

The proper functioning of the proposed architecture requires the availability of scalable, resilient,
and efficient communication and synchronization services. These can be standardized and made
available as standard “global information bus services.” Among the issues to address are the
following:

e The services provided by such information bus: publish and subscribe, ordered broadcasts,
consensus protocols, and so on.

e The QoS and resilience guarantees, possibly with differentiated levels of service.

e Security and capability management, to restrict which agents can produce and consume which
information (including commands).

e Priorities and conflict resolution schemes, to handle potential conflicts between agents

e Physical configuration management, to control which physical resource are used by different
communication channels.

An important issue concerns agent interfaces. An agent (e.g., an enclave) can be represented
by one manager, or one active manager and one backup manager, or multiple active managers,
and so on. In each case, one needs to specify the contract with the client (e.g., only one manager
can issue commands) and the process for enforcing it (e.g., the protocol for replacing the active
manager with a backup manager).

The other generic component discussed in Section 4 is a scalable, transactional object store.
Our community may be able to reuse technologies developed for fast online transaction processing;
but new interfaces are likely to be required, for example, for supporting user space remote accesses
and updates.

We discussed the functionality of different components and their interfaces. However, the system
will also require performance and resilience specifications. In particular, the larger size of exascale
systems will force scalability issues; and the more frequent failure rates will necessitate much faster
recovery. While acknowledging the importance of performance and resilience specifications, we
leave this to later work.
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6 Recommended Strategy / Path Forward

The HPC community needs a well-defined, consistent, and complete set of programming interfaces
(HPC-PIs), to enable and support application execution on HPC systems. Developers of runtime
systems and tools will know that they can rely on the existence of these services and can be assured
of reaching a broad audience. Moreover, system vendors will know the target set of services to be
supported and will be free to innovate in the most efficient approaches to providing these services.

Without common HPC-PIs, developers of runtime systems and tools must target the “least
common denominator of services that are available on all HPC platforms or must selectively ignore
HPC platforms that do not provide services that are deemed important. And without such common
HPC-PIs, system vendors must support all the services that might be used by an HPC runtime
system or tool, frequently compromising performance.

6.1 Goals

The path to exascale presents several key challenges—power management, resilience, deeper mem-
ory hierarchy, and increased parallelism—that fundamentally change the cost trade-offs that have
driven the design of operating and runtime systems since the early 1970s. To meet these challenges,
the HPC-PIs must provide the following:

e Conceptual framework for implementing resource management policies that extends from an
exascale system to the discrete resources used by an application

e Support for the dynamic characteristics of resources (e.g., degraded performance in the pres-
ence of a partial failure)

e Support for the management of power consumption by an application;
e Support enabling applications to manage extended memory hierarchies

e Support for the creation and management of lightweight execution contexts, to enable a much
higher degree of application parallelism.

The system management strategy used in HPC systems (space sharing) means that many of
the resource management issues traditionally relegated to the operating system can be left to the
runtime system, where they can be tailored to the specific needs and expectations associated with
the programming model supported by the runtime system.

e The lowest-level interfaces should be as thin as possible (e.g., initialize the hardware, and
get out of the way) to enable effective management of the resources by higher levels of the
software stack (e.g., the runtime system) that are closer to the application.

e Drivers for specialized hardware should be easy to accommodate within the overall architec-
ture of the system.

e Many functions that have traditionally been embedded deep within the operating system (e.g.,
hardware monitoring and control) should be exposed to the runtime system and possibly the
application.

o Interfaces should be designed for change, embracing “open designs that support selective
replacement of components.
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e “Loose definitions of the interfaces may be needed to support future change or when there is
close collaboration on both sides of the interface.

e Hardware transparency, the ability of the interface to reflect hardware costs accurately, is
desirable.

6.2 Proposed Activities

The development of the required HPC-PIs will require distinct steps. While these steps will likely
overlap or proceed in a spiral fashion, each step is expected to produce a concrete artifact (e.g., a
document or prototype implementation).

High-level architecture Develop components, functions, interfaces, and their interaction.

Interfaces Define possible partitions of the architecture into subsystems. Standardization of in-
terfaces is critical when subsystems could be supplied by different vendors.

New Interfaces Identify where new interfaces are needed (and where existing ones can be reused)
and define the new interfaces.

Metrics Develop approximate performance targets
Prototype Develop prototype/reference implementations of the architecture; validate interfaces.

Product Develop, test, deploy, and support the software stack.

6.3 Migration Path from Current to Future Architecture

The proposed architecture extends and generalizes the current software stack of supercomputers.
The architecture described in Figures 1 and 2 is sufficiently generic to match the current organi-
zation of IBM or Cray systems. In some cases, however, we have collected together subsystems
that are now disjoint. For example, the SGOS contains the hardware monitoring and control in-
frastructure, as well as the resource management infrastructure; and the node common runtime
includes thread management, low-level communication services, and memory management. These
are supported today by distinct libraries, and such a separation may extend into the future. How-
ever, the clustering we propose aims at raising awareness to the tight interaction among these
different components. For example, fault handling requires a tight interaction between hardware
monitoring and resource management; asynchronous computation models require tight interaction
between the communication subsystem and task scheduling; and locality requires a tight interac-
tion between memory management and task scheduling. Thinking about these layers in a more
integrated manner will ensure they interact properly.

However, the evolution needed from where we are now to what we have outlined requires several
developments.

6.3.1 Cleaner separation of functionality across components

For example, no clean separation currently exists between the SGOS stack and the EOS stack.
Such a separation would allow running different parts of the machine with different node kernels
(for testing ahead of upgrades or for customization). It would also provide a good separation of
concerns: For example, an exascale system need not run many more jobs than a current petascale
system but would run bigger jobs; the scalability concern can be handled within the enclave stack.
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Another example is provided by the current structure of many batch schedulers that handle both
the allocation of resources and the actual management of these resources: job loading and health
monitoring. A separation between resource manager and scheduler enables the use of external,
(mostly) platform independent schedulers.

6.3.2 New components

One major new component is the general publish and subscribe communication infrastructure that
we posit. Currently, different components have each a different logical communication infrastruc-
ture, usually with a tree topology. The hardware monitoring and control subsystem is likely to use
out-of-band communication using a separate ethernet network; the resource management infras-
tructure typically uses in-band communication on the high-speed network. This separation is seen
to enhance the reliability of the monitoring infrastructure. Future approaches to fault tolerance
will require a closer interaction between the two subsystems, with communication between them
occurring not only at the top.

We propose an integrated logical communication infrastructure; a proper mapping of it onto
the physical infrastructure will enable a trade-off between reliability and performance.

6.3.3 New functionality for existing components

Most changes needed will be in the form of new functions added to existing components. For
example, more resources will become managed by the resource manager component of the SGOS.
This clearly is the case for energy, but it also is the case for I/O bandwidth or I/O storage.

Moreover, allocations that are static become dynamic: these may include changes in power
allocation, changes in the number of nodes allocated to an enclave, and changes in I/O resources.

Most important, failures are reflected up to the topmost and most local level that has registered
a capability to handle this type of failures: The proposed architecture makes no a priori assumptions
about the mechanisms for fault handling and the software layers that provide these mechanisms.
Notifications of failures are routed to the software components that registered their ability to handle
the failure and that are affected by that failure.

6.4 Activities and Roadmap

The general principles detailed above need to be translated into concrete actions. We outline below
a set of key activities; these activities will require the involvement of DOE, vendors, and, in some
cases, the academic community.

Agreement on Architecture

The goal of this activity is to agree on the component architecture for the exascale software stack
and the division of functions across components in this stack. As part of this activity, each nominal
component may be subdivided into subcomponents. This exercise should also involve a detailed
mapping of the current product offerings onto these components, in order to identify mismatches.

Agreement on levels of technology readiness for the different components and their
interfaces

A rough outline of the level of readiness for various technologies is provided in Appendix A. This
list needs to be further refined and to become a continued activity of a technical group within DOE,
interacting with academia and vendors.
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Agreement on desired levels of standardization

The purpose of this activity is to develop a common view of interfaces that will be standardized,
as distinct from interfaces that will be proprietary. This activity may not lead to a consensus,
but it will indicate areas of agreements and disagreement among the various players. We discuss
standards in more detail in Section 6.6.

Agreement on Timetable

We expect that each technology will evolve through phases that include initial research, prototype
development, standardization of interfaces, deployment on production platforms at the 100 PF
performance level, and deployment at exascale.

This report includes an initial proposal for each of the four ”agreement” activities: the overall
system structure, their level of readiness, desired standards, and timetable. We believe this initial
document is sufficient to drive decisions about DOE research initiatives in OS and runtime in 2013.
However, we expect that this report will be a live document that continues to be updated as we
learn more from research and from the evolution of vendor technology and as the exascale activities
continue to evolve.

7

6.5 Research Plan

The challenges listed in Section 2 and the estimates of TRLs in Appendix A provide a roadmap
and a prioritization for DOE’s research in extreme-scale OS and runtime. While we do not have
the entire picture, we have clearly identified high-priority items with a long lead time.

We note, however, a chicken and egg problem: On one hand, research in OS and runtime will
be more easily assimilated in future products if it fits in the overall architecture proposed in this
document and uses the proposed interfaces; on the other hand, research may be needed to determine
the effectiveness of the proposed structures and interfaces. Thus, research and standardization
efforts need to proceed in parallel, with continued interaction between the two efforts.

We propose the following interlock between the various activities:

e DOE-funded research projects will be expected to conform to the nominal architecture out-
lined in this document, in terms of how various functions are packaged into components and
how interfaces are expressed. Projects that want to use a different structure will need to
justify their choice; the trade-off between increased research freedom and increased ability to
use the research product will be taken into consideration in funding decisions.

e Projects that develop components that interact with one of the proposed interfaces will need
to match the proposed interface, if it is defined. If it is not fully defined, then the project will
participate in its standardization.

e DOE will fund teams to develop reference implementation of any of the proposed components
and interfaces. To the extent possible, the team developing an initial, reference implementa-
tion will be the same team that pursues research related to that component or interface.

6.6 Standardization Activities

The different interfaces described in Section 5 need to be standardized whenever different organi-
zations (vendors, consortia or public institutions) will develop the software and firmware on each
side of the interface. Some level of standardization can help even when the interface is internal,
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since it facilitates the division of labor across different development teams. Nevertheless, one can
expect that vendors may oppose the standardization of some interfaces, for various reasons:

e The level of vertical integration differs among vendors; hence vendors will differ on the inter-
faces that need to be exposed and standardized.

e Vendors will be reluctant to expose “internal” interfaces, since doing so may restrict their free-
dom of action and may expose proprietary information that provides them with a competitive
advantage.

e Vendors may be reluctant to expose low-level control interfaces as a misuse of such interfaces
may harm the system or lead to bugs that are hard to diagnose.

e Premature standardization may hamper research and development.

These concerns may be alleviated in a variety of ways. Premature standardization can be
avoided by carefully choosing the time for and level of standardization. As a rule, standards should
be defined only when previous R&D has shown the viability and effectiveness of the proposed
approach and when a reference implementation exists. Some of the interfaces we discussed (e.g., a
generic publish and subscribe infrastructure or interfaces for tools) may be ripe for standardization;
others should wait for further research. This categorization and timeline should be established in
consultation with industry.

The risks of exposing low-level interfaces can be reduced by building appropriate “circuit break-
ers”: for example, the user may manage the power consumption of a component, but the component
will be stopped (and an appropriate exception will be raised) if the component overheats.

An important consideration is that standardization can be more or less prescriptive. For exam-
ple, the HAL interface is likely to be hardware specific. While one may not be able to standardize all
verbs and objects, one could standardize how each type of information is exposed to the global OS
(configuration files, periodic polling or periodic pushing, callback function, etc.); and standardize
the major categories of sensors and actuators.

Different levels of exposure to standards can also exist. We propose the following categorization.

e Standard Interface

— The interface is defined by a public document maintained by a standard body.
— The interface is implemented and supported by multiple vendors.
— An implementation of one side of this interface will support any software that runs on

the other side and uses the interface correctly (correct use is defined by the standard).

e Open Public Interface

The interface is defined by a public document.

— The interface is implemented and supported by at least one vendor.

The implementations support any software that runs on the other side and uses the
interface correctly (correct use is defined by the standard).

The vendor guarantees continued support to the interface for an acceptable period of
time.

e Proprietary Public Interface
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— The interface is implemented by at least one vendor.

— The vendor is willing to document and provide access to the interface, under a suitable
nondisclosure agreement.

— The vendor is willing to support a system where third-party software runs on the other
side of the interface (some restrictions may apply on how this software is verified and
tested).

— The vendor guarantees continued support to the interface for an acceptable period of
time.

e Private Interface
— None of the above

For example, Microsoft provides a public interface for vendors that develop Windows device
drivers, but it requires these device drivers to pass certain formal verification procedures. Discus-
sions with vendors should lead to a decision about which interface falls in which category.

Decisions on standardization also should be negotiated with vendors and be taken by consensus,
to the extent possible. However, one should recognize that the interests of DOE may not be fully
aligned with the interests of each vendor. DOE may need to push for more openness, as part of its
funding of exascale R&D and its procurements.

6.7 Governance

To pursue the activities outlined in the preceding sections, we recommend that a DOE “nexus” be
created to handle the following responsibilities:

e DOE and community coordination: The OS/R community can benefit from regular workshops
and maintaining up-to-date documents, such as this one, that outlines current challenges and
promising research directions. The community can also share challenge problems and research
results in focused workshops. A DOE OS/R nexus could help coordinate activities with other
DOE research activities, such as the co-design centers and X-Stack projects.

e OS/R testbeds: In order to develop novel OS/Rs, early access to prototype and first-access
hardware and scalable testbeds is vital. Such testbeds have specialized software frameworks
that permit OS/R scientists to load their own operating systems running as a privileged
(“root”) user. Scientists also must have access to out-of-band management interfaces to con-
trol and monitor experimental hardware, including external power monitoring, “console” in-
terfaces, and remote rebooting. A DOE OS/R nexus could coordinate and/or supply testbeds
for low-level system software. Such a nexus also could encourage and coordinate INCITE or
ALCC proposals for testing extreme-scale OS/R components at scale.

e API coordination and standards: Standard interfaces help support a rich software ecosys-
tem. The DOE OS/R nexus could help build teams to participate in coordinating APIs and
standards. Committees could be formed as needed to work with vendors and international
partners in areas such as power management, low-level messaging layers and fault response.

e Software and benchmark repository: Sharing benchmarks, benchmark results, and community-
developed reference implementations can foster community collaboration. A DOE OS/R
nexus could provide an easy mechanism for sharing results and code, resulting in broader
experimentation and testing of new software components as well as clear paths for novel
software packages to be made available to vendors and other research teams.
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6.8

Business and Sustainability Model

Strong engagement of vendors is essential to the successful deployment of exascale platforms. We
therefore present here a model for vendor engagement.

6.8.1 Vendor Engagement

We expect that much of the software will be vendor supported. In particular, vendors will want
full control of software they deem critical to the proper functioning of their system. On the other
hand, we do not believe that an R&D activity that involves only vendors can be successful, for a
variety of reasons:

Many technologies are still in the research phase. DOE labs have the skills to successfully
pursue such research and to make it available to multiple vendors.

Significant uncertainty remains about the set of vendors that will deploy exascale platforms
more that a decade from now. Some of the potential future vendors currently have limited
knowledge about HPC software.

Software developed in DOE labs has been successfully adopted by vendors in the past, in-
cluding low-level libraries (MPiCH, PAPI). We have little reason to believe the future will be
any different.

System software developed in DOE labs has been an essential “Plan B” for large platforms in
the past (e.g., SUNMOS for the Intel Paragon). The large uncertainties of exascale designs
mandate that the capability to deploy such Plan B system software be maintained.

We expect vendors to be involved at various levels in exascale OS and runtime:

Continued activities to refine the proposed exascale software architecture and to standardize
interfaces, wherever possible

Joint research to prototype key components
Technology transfer from DOE research projects to vendor products

Joint activities to define, develop, test, and validate capabilities for exascale software.

6.8.2 Engagement Principles

The engagement with vendors should be driven by the following principles:

Potential vendors must be included in the entire process.

Vendor differentiation should be based on quality of implementation rather than functionality
whenever possible.

Prototype (reference) implementations should be developed during the design of the interfaces
to demonstrate completeness, consistency, and potential for efficient implementation.

Support for the proposed interfaces should be a requirement of every DOE system procure-
ment.

Exascale Operating System and Runtime Software Report 40



e Reference implementations should be developed under an open-source license that provides
as much flexibility to potential vendors as possible (e.g., a BSD-style license).

e Interfaces should be partitioned to support a rich ecosystem of potential suppliers (e.g., the
hardware vendor may not be the ultimate supplier of the operating system, and several
vendors may supply runtime systems or tools).

U.S. vendors will want to supply systems to Japan or Europe; foreign customers of extreme-scale
systems manufactured in the United S will want to be involved in the evolution of extreme-scale
computing technology. Furthermore, the significant development costs of exascale technologies may
require an international collaboration, in order to develop these technologies in a timely manner.
Therefore, international collaborations are likely to be part of this effort.

6.8.3 Scale-Down and Scale-Out to Enable Scale-Up

One hopes that a software architecture developed for extreme-scale systems will also benefit a
broader range of systems. If so, vendors can justify investments in the extreme-scale software stack
by the needs of a broader market than the one presented by extreme-scale computing.

Such a hope is justified by two factors:

e The cost of hardware continues to drop, so that a performance level that costs hundreds of
millions of dollars today will cost tens of millions in a decade. Furthermore, as clock speed
does not improve, a low-cost cluster in a decade will have the same level of parallelism as a
high-end supercomputer has today. Therefore, one can expect a continued trickle-down effect,
with technologies developed for the very high end becoming relevant for lower-cost platforms
over time.

e Significant commonality is expected in the technologies deployed for high-end computing
systems that support large-scale simulations, and big-data systems that support large-scale
analytics. The latter type of platforms represents a growing market.

However, one should realize that both arguments have limitations.

e Moore’s “law” is expected to inflect as we reach feature sizes of 107 nm, with future progress
being slower and more expensive. If the underlying microelectronic technology plateaus in
the next decade, then exascale systems built in the next decade will not have trickle-down
benefits.

e The commonality among various large systems is easy to exaggerate. Even though companies
such as Google, Amazon, or Microsoft build cloud computing facilities whose compute power
easily exceeds that of the largest deployed supercomputers, no common technologies have been
developed to support both types of platforms. Even if common hardware will be possible,
significant differentiation in software requirements is likely.

Interfaces that will be used at the very high end will need to be supported on more modest
platforms, since these will be used for developing the most scalable applications. Users will want the
same interfaces in all the platforms they use, both at the very high-capability end and at the more
modest capacity level. Conversely, whenever existing interfaces can provide the right functionality
and performance at extreme scale, they should be reused. However, it is wrong to assume that
technologies developed to leverage extreme-scale computing platforms will benefit more modest
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platforms or platforms designed for other application domains. More likely, much of the extreme-
scale software stack will be unique to extreme-scale computing. Plans for the development of this
stack must be consistent with such a scenario, in which the following considerations are important:

e The HPC interfaces must be supported on commonly available platforms, most likely on top
of commonly used operating systems (e.g., Linux). For example, while many MPI imple-
mentations are optimized to use high-performance networks, MPI is also available on top of
TCP/IP.

e Application developers should be encouraged to use the HPC interfaces and not use additional
functionality that might be available on smaller systems.

6.9 Facilities

The development of HPC software is always hampered by the lack of adequate testing facilities.
Indeed, software for a new supercomputer usually is not tested at full scale until the supercomputer
is deployed at the customer site: It is too expensive, or plainly impossible, for vendors to assemble
a system of the same scale in their facilities. As a result, it often takes more than a year before a
system is fully functional and fully accepted.

Similarly, research in HPC software, especially system software, is hampered by the lack of
platforms where such software can be tested at a reasonable scale: Supercomputing centers are
reluctant to allow the deployment of experimental system software on their machines, since such
software often causes crashes.

Modeling, simulation, and emulation can partially alleviate this problem, but only if supported
by platforms that are within one or two orders of magnitude of exascale. DOE should fund the
establishment of large system software testbeds that are tracking the performance of top-capability
systems within one of two orders of magnitude. One possibility is to reuse systems that are being
decommissioned as system software testing platforms.

The management of such platforms differs significantly from the management of an application
platform. In particular, one will want to support multiple concurrent experiments with no risk of
one experiment causing the entire system to crash. And one will want to provide full control of a
system partition to a remote user. Leveraging the experience gained from previous deployments
of such experimental platforms such as Chiba City (now decommissioned) and Breadboard [11] at
Argonne National Laboratory will be critical. The Breadboard system provides a capability not
provided by any other testbed system within DOE. Users can log into the Breadboard system,
allocate nodes, and completely overwrite the operating system and disk image from scratch. The
system provides not only queuing, but isolation, such that collaborators from around the world can
gain privileged (root) access to the hardware for low-level system software research.

6.10 Timeline
We outline below a rough timeline for exascale firmware—assuming deployment in 10 years

Years 1-3: Research of core technologies and standardization
Years 4—6: Testing and validation of good-quality prototypes

Years 7—10: Industrial development
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This timeline is schematic. On the one hand, research and standardization efforts will continue
beyond year 3; on the other hand, technology that is more mature will deployed before year 10.
However, it is essential to start research as soon as possible on technologies that are not mature:
industry will want to execute a full development cycle on technologies that are essential to the
functioning or exascale systems; and industry will adopt only research technologies that have been
demonstrated at reasonable scale and shown to perform well and be robust.
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A Levels of Readiness

We show in the table below the DoD definition of Technology Levels of Readiness (TRL) [12]. While
this analysis may be too fine grained for our purpose, it provides a useful starting point.

Table 3: Technology Readiness Levels in the Department of

Defense (DoD)

Technology Readi-
ness Level

Description

Supporting Information —

1. Basic principles ob-
served and reported

Lowest level of technology readi-
ness. Scientific research begins
to be translated into applied re-
search and development (R&D).
Examples might include paper
studies of a technologys basic
properties.

Published research that identifies
the principles that underlie this
technology. References to who,
where, when.

2. Technology concept
and/or application for-
mulated

Invention begins.  Once basic
principles are observed, practi-
cal applications can be invented.
Applications are speculative, and
there may be no proof or detailed
analysis to support the assump-
tions. Examples are limited to
analytic studies.

Publications or other references
that out-line the application be-
ing considered and that provide
analysis to support the concept.

3. Analytical and
experimental criti-
cal function and/or
characteristic proof of
concept

Active R&D is initiated. This in-
cludes analytical studies and lab-
oratory studies to physically vali-
date the analytical predictions of
separate elements of the technol-
ogy. FExamples include compo-
nents that are not yet integrated
or representative.

Results of laboratory tests per-
formed to measure parameters of
interest and comparison to ana-
lytical predictions for critical sub-
systems. References to who,
where, and when these tests and
comparisons were performed.

4. Component and/or
breadboard validation
in laboratory environ-
ment

Basic technological components
are integrated to establish that
they will work together. This is
relatively low fidelity compared
with the eventual system. Exam-
ples include integration of ad hoc
hardware in the laboratory.

System concepts that have been
considered and results from
testing laboratory-scale bread-
board(s). References to who did
this work and when. Provide
an estimate of how breadboard
hardware and test results differ
from the expected system goals.
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5. Component and/or
breadboard validation
in relevant
ment

environ-

Fidelity of breadboard technology
increases significantly. The ba-
sic technological components are
integrated with reasonably real-
istic supporting elements so they
can be tested in a simulated envi-
ronment. Examples include high-
fidelity laboratory integration of
components.

Results from testing laboratory
breadboard system are integrated
with other supporting elements
in a simulated operational envi-
ronment. How does the relevant
environment differ from the ex-
pected operational environment?
How do the test results compare
with expectations? What prob-
lems, if any, were encountered?
Was the breadboard system re-
fined to more nearly match the
expected system goals?

6. System/subsystem
model or prototype
demonstration in a
relevant environment

Representative model or proto-
type system, which is well beyond
that of TRL 5, is tested in a rele-
vant environment. Represents a
major step up in a technologys
demonstrated readiness. Exam-
ples include testing a prototype
in a high-fidelity laboratory envi-
ronment or in a simulated opera-
tional environment.

Results from laboratory testing
of a prototype system that is
near the desired con-figuration
in terms of performance, weight,
and volume. How did the test
environment differ from the oper-
ational environment? Who per-
formed the tests? How did the
test compare with expectations?
What problems, if any, were en-
countered? What are/were the
plans, options, or actions to re-
solve problems before moving to
the next level?

7. System proto-
type demonstration in
an operational envi-
ronment.

Prototype near or at planned op-
erational system. Represents a
major step up from TRL 6 by re-
quiring demonstration of an ac-
tual system prototype in an op-
erational environment (e.g., in an
air-craft, in a vehicle, or in space).

Results from testing a prototype
system in an operational environ-
ment. Who performed the tests?
How did the test compare with
expectations? What problems,
if any, were encountered? What
are/were the plans, options, or
actions to resolve problems before
moving to the next level?
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8. Actual system
completed and quali-
fied through test and
demonstration.

Technology has been proven to
work in its final form and under
expected conditions. In almost
all cases, this TRL represents the
end of true system development.
Examples include developmental
test and evaluation (DT&E) of
the system in its intended weapon
system to determine if it meets
design specifications.

Results of testing the system in
its final configuration under the
expected range of environmental
conditions in which it will be ex-
pected to operate. Assessment
of whether it will meet its opera-
tional requirements. What prob-
lems, if any, were encountered?
What are/were the plans, op-
tions, or actions to resolve prob-
lems before finalizing the design?

9. Actual system
proven through suc-
cessful mission opera-
tions.

Actual application of the tech-
nology in its final form and un-
der mission conditions, such as
those encountered in operational

OT&E reports.

test and evaluation (OT&E). Ex-
amples include using the system
under operational mission condi-
tions.

Most, if not all the technologies discussed in this report are at TRL 1 or higher; none are at
TRL 8 or 9, since no exascale system is deployed today. The goal of the exascale R&D in the
coming 3-5 years is to bring all major components to TRL 5 and above.

We provide below a first (very rough) list of components with low levels of readiness (TRL 2/3);
we expect that these estimates will be further refined in interaction with industry and academia.

Hardware Abstraction Layer The least developed components here are
1. The ability to establish operating bounds for hardware — e.g., control of power consump-
tion, turning off components, initializing memory configuration, etc.
2. A generic interface for controlling user-space communication (NIC-HAL).

3. The ability to control what events are reported by HW
All three items have exascale unique aspects; the NIC-HAL is largely HP C-specific.
System Global OS The least developed components are

1. Coordinated management of different resources: nodes, network bandwidth, power, 1/O
bandwidth. etc. Currently only nodes are an allocatable resource. As multiple resources
become allocatable, the selection of an optimal allocation becomes quite complex. The
need for reacting to changes in hardware (in particular, failures) means that one will
need to design feedback loops that drive the system into a good regime (control theory,
introspection, adaptation...), rather than using centralized allocators.

2. Flexible negotiation protocols that enable to discover the abilities of the various system
layers (e.g., their ability to handle hardware failures) and set up proper event handling
chains through the software stack.
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Enclave OS/R Current system stacks do not distinguish between enclave OS and system global
OS; need to develop a hierarchical approach with a clearly defined division of labor between

GSOS and EOS

Node OS/R Nodes will be heavily “NUMA” and will provide multiple paths from the external
network to the internal, NUMA memory system. They will be heterogeneous and will support
fine-grain power management for different node components. Many of the OS/R capabilities
needed to handle such nodes are lacking. In particular:

1.

BRI

6.

Run-time mechanisms for enhancing locality by coordinating data location, thread lo-
cation and NIC location.

Message-driven scheduling for latency hiding.
On chip power management
Co-design of hardware and node OS/R to enable resource management in user mode.

Co-design of chip fault detection/correction/isolation mechanisms with node OS/R re-
silience mechanisms.

OS/R support and leverage of heterogeneity

Global Information Bus The design of a scalable, resilient pub/sub structure that can also
control the order in which events are delivered and handled requires major invention.
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